Setting the Stage: Context for the Curious Book Reader
This entry captures an important development in our journey to build a robust, AI-powered content analysis and reporting system. It serves as a practical blueprint for transforming raw, AI-audited data into polished, client-ready Excel deliverables. This particular "way" emphasizes an iterative, collaborative workflow between human and AI, focusing on problem-solving, code refinement, and the meticulous attention to detail required for professional data products. We delve into the implementation of dynamic Excel formatting, intelligent column sizing, and consistent file path management, all crucial steps in building a reliable and scalable automation methodology. This ongoing tapestry of articles documents our progress, showcasing how each development builds upon the last, steadily enhancing the Pipulate persistent workflow.
Technical Journal Entry Begins
Okay, it’s 4:30 PM. We are in the home stretch. We are on the next and final one up. Hopefully this is one of the simplest, but you will have one of the largest “source” files to look at to get your clues.
All we have to do is output this as an Excel .xlsx file with each host going
onto its own sub-tab and gradient color scale with red to green with 5 being
green and 1 being red.
I am going to show you where we accomplish this.
We will be outputting our DataFrame according to much the same techniques but of course vastly simplified. The only alteration to the DataFrame is the dropping of the markdown column because that would over-stuff the file.
The Deliverable Challenge: From Data to Formatted Excel
This is a large Prompt Fu drop on an already greatly worked discussion but we’re going to see what it comes up with because I want to see if I don’t have to go through the context-building exercise again.
(nix)
[mike@nixos:~/repos/pipulate]$ vim foo_files.py
(nix)
[mike@nixos:~/repos/pipulate]$ python prompt_foo.py
--- Processing Files ---
-> Converting notebook: /home/mike/repos/pipulate/Notebooks/URLinspector.ipynb
-> Converting notebook: /home/mike/repos/pipulate/Notebooks/GAPalyzer.ipynb
Python file(s) detected. Generating codebase tree diagram... (2,245 tokens)
Python file(s) detected. Generating UML diagrams...
-> Generating for /home/mike/repos/pipulate/Notebooks/imports/url_inspect_sauce.py... (skipped)
-> Generating for /home/mike/repos/pipulate/Notebooks/imports/gap_analyzer_sauce.py... (skipped)
...UML generation complete.
--- Files Included ---
• /home/mike/repos/pipulate/Notebooks/URLinspector.ipynb (1,472 tokens)
• /home/mike/repos/pipulate/Notebooks/imports/url_inspect_sauce.py (10,025 tokens)
• /home/mike/repos/pipulate/Notebooks/GAPalyzer.ipynb (5,509 tokens)
• /home/mike/repos/pipulate/Notebooks/imports/gap_analyzer_sauce.py (27,983 tokens)
--- Auto-Context Included ---
• Codebase Structure (eza --tree) (2,245 tokens)
--- Prompt Summary ---
Summed Tokens: 47,695 (from section parts)
Verified Tokens: 48,177 (from final output)
(Difference: +482)
Total Words: 20,859 (content only)
--- Size Perspective ---
📚 Equivalent in length to a **Novella or a Master's Dissertation** (Note: With a token/word ratio of 2.31, this content is far denser and more complex than typical prose of this length).
Markdown output copied to clipboard
(nix)
[mike@nixos:~/repos/pipulate]$
Gemini Web: Context verified.
You’ve got it. We are in the home stretch, and this is the final, satisfying step: “harvesting the pumpkins” into a client-ready deliverable. We’ll follow the robust pattern from gap_analyzer_sauce.py but apply it with the simplicity this project requires.
The plan is to add one new function to url_inspect_sauce.py that handles the entire export and formatting process.
Iteration One: Core Excel Export & Conditional Formatting
Implementation Plan: Export to Formatted Excel
Goal: Create a new export_audits_to_excel function in url_inspect_sauce.py that:
- Takes the final
audited_dfas input. - Drops the
markdowncolumn to keep the file lightweight. - Parses the
urlcolumn to find the unique hosts (domains). - Creates a new Excel
.xlsxfile. - Writes the data for each host to its own separate tab.
- Applies the requested red-to-green (1-to-5) conditional formatting to the
ai_scorecolumn on each sheet.
1. 🛠️ Instructions for Gemini CLI
-
Action: Append the new
export_audits_to_excelfunction (Code Block 1) to the end ofNotebooks/imports/url_inspect_sauce.py. This function also requires new imports, so add the import block (Code Block 2) to the top of that same file. -
File to Edit:
Notebooks/imports/url_inspect_sauce.py
Code Block 1 (Add Imports to TOP of File)
# Add these imports to the top of Notebooks/imports/url_inspect_sauce.py
from urllib.parse import urlparse
import openpyxl
from openpyxl.formatting.rule import ColorScaleRule
from openpyxl.utils import get_column_letter
Code Block 2 (Append Function to END of File)
def export_audits_to_excel(job: str, df: pd.DataFrame):
"""
Exports the audited DataFrame to a formatted Excel file with:
- One tab per host.
- 'markdown' column dropped.
- Red-to-Green (1-5) conditional formatting on the 'ai_score' column.
"""
print("📊 Exporting final audit to Excel...")
# --- 1. Prepare DataFrame ---
if df.empty:
print("⚠️ DataFrame is empty. Nothing to export.")
return None
# Drop markdown column as requested
df_to_export = df.drop(columns=['markdown'], errors='ignore')
# Extract host to be used for sheet names
try:
df_to_export['host'] = df_to_export['url'].apply(lambda x: urlparse(x).netloc)
except Exception as e:
print(f"❌ Error parsing URLs to get hosts: {e}")
return None
unique_hosts = df_to_export['host'].unique()
# --- 2. Define Paths ---
output_dir = Path("output") / job
output_dir.mkdir(parents=True, exist_ok=True)
excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx"
# --- 3. Write Data to Tabs ---
try:
with pd.ExcelWriter(excel_path, engine='xlsxwriter') as writer:
for host in unique_hosts:
df_host = df_to_export[df_to_export['host'] == host].drop(columns=['host'], errors='ignore')
# Clean host name for sheet title (max 31 chars, no invalid chars)
safe_sheet_name = re.sub(r'[\[\]\*:\?/\\ ]', '_', host)[:31]
df_host.to_excel(writer, sheet_name=safe_sheet_name, index=False)
print(f"✅ Initial Excel file written to {excel_path}")
except Exception as e:
print(f"❌ Error writing to Excel file: {e}")
return None
# --- 4. Apply Formatting ---
try:
print("🎨 Applying conditional formatting...")
wb = openpyxl.load_workbook(excel_path)
# Define the Red-Yellow-Green color scale rule
# Red (1) -> Yellow (3) -> Green (5)
color_scale_rule = ColorScaleRule(
start_type='num', start_value=1, start_color='F8696B',
mid_type='num', mid_value=3, mid_color='FFEB84',
end_type='num', end_value=5, end_color='63BE7B'
)
for host in unique_hosts:
safe_sheet_name = re.sub(r'[\[\]\*:\?/\\ ]', '_', host)[:31]
if safe_sheet_name in wb.sheetnames:
sheet = wb[safe_sheet_name]
# Find the 'ai_score' column
column_mapping = {cell.value: get_column_letter(cell.column) for cell in sheet[1]}
ai_score_col = column_mapping.get('ai_score')
if ai_score_col:
last_row = sheet.max_row
if last_row > 1:
range_string = f"{ai_score_col}2:{ai_score_col}{last_row}"
sheet.conditional_formatting.add(range_string, color_scale_rule)
else:
print(f" -> ⚠️ Could not find 'ai_score' column in sheet '{safe_sheet_name}'")
wb.save(excel_path)
print("✅ Formatting applied successfully.")
return str(excel_path)
except Exception as e:
print(f"❌ Error applying formatting to Excel file: {e}")
return str(excel_path) # Return path even if formatting fails
2. 🧑💻 Instructions for You (The Human)
-
Restart the Kernel (to load the new imports and function).
-
Add a new cell at the very end of your
URLinspector.ipynbnotebook to call the function and create the file.Add this new cell:
# %% [markdown] # ## 💾 Step 6: Export Final Deliverable # %% # This exports the final, audited DataFrame to a formatted Excel file. excel_file_path = secretsauce.export_audits_to_excel(job, audited_df) if excel_file_path: print(f"\n🎉 Success! Deliverable saved to: {excel_file_path}") else: print("\n❌ Error during export.")
This plan directly mirrors the robust export process from GAPalyzer (writing with Pandas, re-opening with OpenPyXL for formatting) but is simplified to only apply the specific formatting you requested. This should get the deliverable in the can.
Me: Please carry out Gemini Web’s plan while leaving anything that needs to
be done in the Notebook .ipynb file to me (the human). Please and thank you!
Gemini CLI:
✦ Okay, I will execute the plan by modifying url_inspect_sauce.py and will leave the notebook changes
to you.
First, I will read the file to get its latest content.
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✓ ReadFile ...Notebooks/imports/url_inspect_sauce.py │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ Understood. Home stretch. I will add the export_audits_to_excel function and its required imports to
url_inspect_sauce.py to create the final, formatted Excel deliverable. I will leave the notebook
modifications to you.
First, I'll read the file.
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✓ Edit ...Notebooks/imports/url_inspect_sauce.py: from openpyxl.utils import get... => from ur… │
│ │
│ 20 import ipywidgets as widgets │
│ 21 from IPython.display import display │
│ 22 │
│ 23 + from urllib.parse import urlparse │
│ 24 + import openpyxl │
│ 25 + from openpyxl.formatting.rule import ColorScaleRule │
│ 26 + │
│ 27 from openpyxl.utils import get_column_letter │
│ 28 from openpyxl.styles import Font, Alignment │
│ 29 from openpyxl.worksheet.table import Table, TableStyleInfo │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ Imports added. Now, appending export_audits_to_excel.
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✓ Edit ...Notebooks/imports/url_inspect_sauce.py: print("✅ AI audit complete... => pri…│
│ │
│ 1095 print("✅ AI audit complete. Merged results into DataFrame.") │
│ 1096 │
│ 1097 return merged_df │
│ 1098 + │
│ 1099 + def export_audits_to_excel(job: str, df: pd.DataFrame): │
│ 1100 + """ │
│ 1101 + Exports the audited DataFrame to a formatted Excel file with: │
│ 1102 + - One tab per host. │
│ 1103 + - 'markdown' column dropped. │
│ 1104 + - Red-to-Green (1-5) conditional formatting on the 'ai_score' column. │
│ 1105 + """ │
│ 1106 + print("📊 Exporting final audit to Excel...") │
│ 1107 + │
│ 1108 + # --- 1. Prepare DataFrame --- │
│ 1109 + if df.empty: │
│ 1110 + print("⚠️ DataFrame is empty. Nothing to export.) │
│ 1111 + return None │
│ 1112 + │
│ 1113 + # Drop markdown column as requested │
│ 1114 + df_to_export = df.drop(columns=['markdown'], errors='ignore') │
│ 1115 + │
│ 1116 + # Extract host to be used for sheet names │
│ 1117 + try: │
│ 1118 + df_to_export['host'] = df_to_export['url'].apply(lambda x: urlparse(x).netloc) │
│ 1119 + except Exception as e: │
│ 1120 + print(f"❌ Error parsing URLs to get hosts: {e}") │
│ 1121 + return None │
│ 1122 + │
│ 1123 + unique_hosts = df_to_export['host'].unique() │
│ 1124 + │
│ 1125 + # --- 2. Define Paths --- │
│ 1126 + output_dir = Path("output") / job │
│ 1127 + output_dir.mkdir(parents=True, exist_ok=True) │
│ 1128 + excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx" │
│ 1129 + │
│ 1130 + # --- 3. Write Data to Tabs --- │
│ 1131 + try: │
│ 1132 + with pd.ExcelWriter(excel_path, engine='xlsxwriter') as writer: │
│ 1133 + for host in unique_hosts: │
│ 1134 + df_host = df_to_export[df_to_export['host'] == host].drop(columns=[ │
│ 'host'], errors='ignore') │
│ 1135 + │
│ 1136 + # Clean host name for sheet title (max 31 chars, no invalid chars) │
│ 1137 + safe_sheet_name = re.sub(r'[\\\[\]\\*:\\?\\/\\ ]', '_', host)[:31] │
│ 1138 + │
│ 1139 + df_host.to_excel(writer, sheet_name=safe_sheet_name, index=False) │
│ 1140 + print(f"✅ Initial Excel file written to {excel_path}") │
│ 1141 + except Exception as e: │
│ 1142 + print(f"❌ Error writing to Excel file: {e}") │
│ 1143 + return None │
│ 1144 + │
│ 1145 + # --- 4. Apply Formatting --- │
│ 1146 + try: │
│ 1147 + print("🎨 Applying conditional formatting...") │
│ 1148 + wb = openpyxl.load_workbook(excel_path) │
│ 1149 + │
│ 1150 + # Define the Red-Yellow-Green color scale rule │
│ 1151 + # Red (1) -> Yellow (3) -> Green (5) │
│ 1152 + color_scale_rule = ColorScaleRule( │
│ 1153 + start_type='num', start_value=1, start_color='F8696B', │
│ 1154 + mid_type='num', mid_value=3, mid_color='FFEB84', │
│ 1155 + end_type='num', end_value=5, end_color='63BE7B' │
│ 1156 + ) │
│ 1157 + │
│ 1158 + for host in unique_hosts: │
│ 1159 + safe_sheet_name = re.sub(r'[\\\[\]\\*:\\?\\/\\ ]', '_', host)[:31] │
│ 1160 + if safe_sheet_name in wb.sheetnames: │
│ 1161 + sheet = wb[safe_sheet_name] │
│ 1162 + │
│ 1163 + # Find the 'ai_score' column │
│ 1164 + column_mapping = {cell.value: get_column_letter(cell.column) for cell │
│ in sheet[1]} │
│ 1165 + ai_score_col = column_mapping.get('ai_score') │
│ 1166 + │
│ 1167 + if ai_score_col: │
│ 1168 + last_row = sheet.max_row │
│ 1169 + if last_row > 1: │
│ 1170 + range_string = f"{ai_score_col}2:{ai_score_col}{last_row}" │
│ 1171 + sheet.conditional_formatting.add(range_string, │
│ color_scale_rule) │
│ 1172 + else: │
│ 1173 + print(f" -> ⚠️ Could not find 'ai_score' column in sheet ' │
│ {safe_sheet_name}'") │
│ 1174 + │
│ 1175 + wb.save(excel_path) │
│ 1176 + print("✅ Formatting applied successfully.") │
│ 1177 + return str(excel_path) │
│ 1178 + │
│ 1179 + except Exception as e: │
│ 1180 + print(f"❌ Error applying formatting to Excel file: {e}") │
│ 1181 + return str(excel_path) # Return path even if formatting fails │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ I have added the export function and imports to url_inspect_sauce.py. All code modifications are
complete. Now, here are the instructions for your notebook.
accepting edits (shift + tab to toggle)
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ > Type your message or @path/to/file │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
~/repos/pipulate no sandbox (see gemini-2.5-pro (67% context | ✖ 1 error (ctrl+o for
(main*) /docs) left) details)
Me: Excellent! Here’s the diff on the Excel writing function:
(nix)
[mike@nixos:~/repos/pipulate]$ git --no-pager show --no-textconv
commit 7f7ed6f40f8e57386be2dc471c6e043508cf7137 (HEAD -> main, origin/main, origin/HEAD)
Author: Mike Levin <miklevin@gmail.com>
Date: Tue Oct 28 16:43:23 2025 -0400
Excel sheets being exported
diff --git a/assets/nbs/URLinspector.ipynb b/assets/nbs/URLinspector.ipynb
index cf0de61d..fde4075a 100644
--- a/assets/nbs/URLinspector.ipynb
+++ b/assets/nbs/URLinspector.ipynb
@@ -84,15 +84,13 @@
]
},
"source": [
- "**Your Role (SEO URL Consultant auditing individual URLs):**\n",
+ "**Your Role (SEO URL Auditor):**\n",
"\n",
- "A \"keyword\" is the unique short combination of words that are most likely to be searched-on by a user who might be interested in this page.\n",
- "What is the five most likely keywords (short combination of words) that this page appears to be targeting?\n",
+ "Based on the input data for a single webpage (URL, title, h1s, h2s, status code, and markdown body), provide the following:\n",
"\n",
- "1. priority: integer (1-5, 1 is highest)\n",
- "2. question: string (The keyword)\n",
- "3. target_intent: string (What specifically is the user likely to have in mind when performing this search?)\n",
- "4. justification: string (Informational, Commercial, Navigational, Transactional?)"
+ "1. **ai_selected_keyword**: The single best keyword phrase (2-5 words) the page appears to be targeting. Prioritize the \\`title\\` and \\`h1_tags\\` for this selection.\n",
+ "2. **ai_score**: On a scale of 1-5 (5 is best), how well-aligned the page's content (\\`title\\`, \\`h1s\\`, \\`h2s\\`, \\`markdown\\`) is to this single keyword. A 5 means the keyword is used effectively and naturally in key places. A 1 means it's barely present.\n",
+ "3. **keyword_rationale**: A brief (1-sentence) rationale for the score, including the user's most likely search intent (Informational, Commercial, Navigational, or Transactional)."
]
},
{
@@ -239,7 +237,7 @@
"metadata": {},
"outputs": [],
"source": [
- "audited_df = await secretsauce.ai_audit_em(job, seo_df, debug=False, limit=5)\n",
+ "audited_df = await secretsauce.ai_audit_em(job, seo_df, debug=False, limit=None)\n",
"display(audited_df)"
]
},
@@ -249,6 +247,20 @@
"id": "15",
"metadata": {},
"outputs": [],
+ "source": [
+ "excel_file_path = secretsauce.export_audits_to_excel(job, audited_df)\n",
+ "if excel_file_path:\n",
+ " print(f\"\\n🎉 Success! Deliverable saved to: {excel_file_path}\")\n",
+ "else:\n",
+ " print(\"\\n❌ Error during export.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "16",
+ "metadata": {},
+ "outputs": [],
"source": []
}
],
diff --git a/assets/nbs/imports/url_inspect_sauce.py b/assets/nbs/imports/url_inspect_sauce.py
index 16c48ea8..d89eb652 100644
--- a/assets/nbs/imports/url_inspect_sauce.py
+++ b/assets/nbs/imports/url_inspect_sauce.py
@@ -20,6 +20,10 @@ import subprocess
import ipywidgets as widgets
from IPython.display import display
+from urllib.parse import urlparse
+import openpyxl
+from openpyxl.formatting.rule import ColorScaleRule
+
from openpyxl.utils import get_column_letter
from openpyxl.styles import Font, Alignment
from openpyxl.worksheet.table import Table, TableStyleInfo
@@ -1075,5 +1079,103 @@ Your entire output must be a single JSON object in a markdown code block, confor
# 'how=left' keeps all original rows and adds AI data where it exists
merged_df = seo_df.merge(ai_df, on='url', how='left')
- print("✅ AI audit complete. Merged results into DataFrame.")
+ # --- Reorder columns to bring AI fields to the front ---
+ if 'ai_selected_keyword' in merged_df.columns:
+ core_cols = ['url', 'title']
+ ai_cols = ['ai_selected_keyword', 'ai_score', 'keyword_rationale']
+
+ # Get all other existing columns
+ other_cols = [col for col in merged_df.columns if col not in core_cols + ai_cols]
+
+ # Combine and apply the new order
+ new_order = core_cols + ai_cols + other_cols
+ merged_df = merged_df[new_order]
+ print("✅ AI audit complete. Reordered columns and merged results.")
+ else:
+ print("✅ AI audit complete. Merged results into DataFrame.")
+
return merged_df
+
+def export_audits_to_excel(job: str, df: pd.DataFrame):
+ """
+ Exports the audited DataFrame to a formatted Excel file with:
+ - One tab per host.
+ - 'markdown' column dropped.
+ - Red-to-Green (1-5) conditional formatting on the 'ai_score' column.
+ """
+ print("📊 Exporting final audit to Excel...")
+
+ # --- 1. Prepare DataFrame ---
+ if df.empty:
+ print("⚠️ DataFrame is empty. Nothing to export.")
+ return None
+
+ # Drop markdown column as requested
+ df_to_export = df.drop(columns=['markdown'], errors='ignore')
+
+ # Extract host to be used for sheet names
+ try:
+ df_to_export['host'] = df_to_export['url'].apply(lambda x: urlparse(x).netloc)
+ except Exception as e:
+ print(f"❌ Error parsing URLs to get hosts: {e}")
+ return None
+
+ unique_hosts = df_to_export['host'].unique()
+
+ # --- 2. Define Paths ---
+ output_dir = Path("output") / job
+ output_dir.mkdir(parents=True, exist_ok=True)
+ excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx"
+
+ # --- 3. Write Data to Tabs ---
+ try:
+ with pd.ExcelWriter(excel_path, engine='xlsxwriter') as writer:
+ for host in unique_hosts:
+ df_host = df_to_export[df_to_export['host'] == host].drop(columns=['host'], errors='ignore')
+
+ # Clean host name for sheet title (max 31 chars, no invalid chars)
+ safe_sheet_name = re.sub(r'[\\\[\]\\*:\\?\\/\\ ]', '_', host)[:31]
+
+ df_host.to_excel(writer, sheet_name=safe_sheet_name, index=False)
+ print(f"✅ Initial Excel file written to {excel_path}")
+ except Exception as e:
+ print(f"❌ Error writing to Excel file: {e}")
+ return None
+
+ # --- 4. Apply Formatting ---
+ try:
+ print("🎨 Applying conditional formatting...")
+ wb = openpyxl.load_workbook(excel_path)
+
+ # Define the Red-Yellow-Green color scale rule
+ # Red (1) -> Yellow (3) -> Green (5)
+ color_scale_rule = ColorScaleRule(
+ start_type='num', start_value=1, start_color='F8696B',
+ mid_type='num', mid_value=3, mid_color='FFEB84',
+ end_type='num', end_value=5, end_color='63BE7B'
+ )
+
+ for host in unique_hosts:
+ safe_sheet_name = re.sub(r'[\\\[\]\\*:\\?\\/\\ ]', '_', host)[:31]
+ if safe_sheet_name in wb.sheetnames:
+ sheet = wb[safe_sheet_name]
+
+ # Find the 'ai_score' column
+ column_mapping = {cell.value: get_column_letter(cell.column) for cell in sheet[1]}
+ ai_score_col = column_mapping.get('ai_score')
+
+ if ai_score_col:
+ last_row = sheet.max_row
+ if last_row > 1:
+ range_string = f"{ai_score_col}2:{ai_score_col}{last_row}"
+ sheet.conditional_formatting.add(range_string, color_scale_rule)
+ else:
+ print(f" -> ⚠️ Could not find 'ai_score' column in sheet '{safe_sheet_name}'")
+
+ wb.save(excel_path)
+ print("✅ Formatting applied successfully.")
+ return str(excel_path)
+
+ except Exception as e:
+ print(f"❌ Error applying formatting to Excel file: {e}")
+ return str(excel_path) # Return path even if formatting fails
diff --git a/foo_files.py b/foo_files.py
index fcb5eec4..4f7d400c 100644
--- a/foo_files.py
+++ b/foo_files.py
@@ -1,12 +1,17 @@
AI_PHOOEY_CHOP = """\
-/home/mike/repos/pipulate/Notebooks/FAQuilizer.ipynb
-/home/mike/repos/pipulate/Notebooks/imports/faq_writer_sauce.py
/home/mike/repos/pipulate/Notebooks/URLinspector.ipynb
/home/mike/repos/pipulate/Notebooks/imports/url_inspect_sauce.py
+/home/mike/repos/pipulate/Notebooks/GAPalyzer.ipynb
+/home/mike/repos/pipulate/Notebooks/imports/gap_analyzer_sauce.py
"""
# HISTORY OF PAYLOADS (BUNDLES OF CONTEXT)
+# /home/mike/repos/pipulate/Notebooks/FAQuilizer.ipynb
+# /home/mike/repos/pipulate/Notebooks/imports/faq_writer_sauce.py
+# /home/mike/repos/pipulate/Notebooks/URLinspector.ipynb
+# /home/mike/repos/pipulate/Notebooks/imports/url_inspect_sauce.py
+
# /home/mike/repos/pipulate/.gitignore
# /home/mike/repos/pipulate/requirements.in
# /home/mike/repos/pipulate/requirements.txt
(nix)
[mike@nixos:~/repos/pipulate]$
Now let’s instruct Gemini CLI how to make it have more friendly column widths based on the kinds of values you know are in the fields.
Enhancing Aesthetics: Professional Styling and Column Management
Gemini Web:
Context verified.
That’s a fantastic result! The iterative debugging, especially the “binary search” with print statements, really paid off. You’ve successfully navigated the KeyError, the UnboundLocalError, the TypeError, and the NameError to get to a working, idempotent AI processing loop. Locking in that win with a git push is the perfect way to secure your “ground game.”
You’re right, the next logical step is to make this deliverable professional. The FAQuilizer already has the blueprint for this. Let’s create that “painterly” Excel output.
Here is the implementation plan for Gemini CLI.
Implementation Plan: Professional Excel Export
Goal: Replace the existing export_audits_to_excel function in url_inspect_sauce.py with a more advanced version that mirrors the formatting capabilities of GAPalyzer, including custom column widths, text wrapping, and table styles.
Instructions for Gemini CLI:
- Edit File:
Notebooks/imports/url_inspect_sauce.py - Action: Replace the entire existing
export_audits_to_excelfunction (fromdef export_audits_to_excel...to the end) with the new, enhanced version below. This new version includes awidth_map, header/cell styling, and applies an Excel Table for banded rows and filtering.
Code to Replace (Gemini CLI, use replace tool):
Find this entire block:
def export_audits_to_excel(job: str, df: pd.DataFrame):
"""
Exports the audited DataFrame to a formatted Excel file with:
- One tab per host.
- 'markdown' column dropped.
- Red-to-Green (1-5) conditional formatting on the 'ai_score' column.
"""
print("📊 Exporting final audit to Excel...")
# --- 1. Prepare DataFrame ---
if df.empty:
print("⚠️ DataFrame is empty. Nothing to export.")
return None
# Drop markdown column as requested
df_to_export = df.drop(columns=['markdown'], errors='ignore')
# Extract host to be used for sheet names
try:
df_to_export['host'] = df_to_export['url'].apply(lambda x: urlparse(x).netloc)
except Exception as e:
print(f"❌ Error parsing URLs to get hosts: {e}")
return None
unique_hosts = df_to_export['host'].unique()
# --- 2. Define Paths ---
output_dir = Path("output") / job
output_dir.mkdir(parents=True, exist_ok=True)
excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx"
# --- 3. Write Data to Tabs ---
try:
with pd.ExcelWriter(excel_path, engine='xlsxwriter') as writer:
for host in unique_hosts:
df_host = df_to_export[df_to_export['host'] == host].drop(columns=['host'], errors='ignore')
# Clean host name for sheet title (max 31 chars, no invalid chars)
safe_sheet_name = re.sub(r'[\[\]\*:\?/\\ ]', '_', host)[:31]
df_host.to_excel(writer, sheet_name=safe_sheet_name, index=False)
print(f"✅ Initial Excel file written to {excel_path}")
except Exception as e:
print(f"❌ Error writing to Excel file: {e}")
return None
# --- 4. Apply Formatting ---
try:
print("🎨 Applying conditional formatting...")
wb = openpyxl.load_workbook(excel_path)
# Define the Red-Yellow-Green color scale rule
# Red (1) -> Yellow (3) -> Green (5)
color_scale_rule = ColorScaleRule(
start_type='num', start_value=1, start_color='F8696B',
mid_type='num', mid_value=3, mid_color='FFEB84',
end_type='num', end_value=5, end_color='63BE7B'
)
for host in unique_hosts:
safe_sheet_name = re.sub(r'[\[\]\*:\?/\\ ]', '_', host)[:31]
if safe_sheet_name in wb.sheetnames:
sheet = wb[safe_sheet_name]
# Find the 'ai_score' column
column_mapping = {cell.value: get_column_letter(cell.column) for cell in sheet[1]}
ai_score_col = column_mapping.get('ai_score')
if ai_score_col:
last_row = sheet.max_row
if last_row > 1:
range_string = f"{ai_score_col}2:{ai_score_col}{last_row}"
sheet.conditional_formatting.add(range_string, color_scale_rule)
else:
print(f" -> ⚠️ Could not find 'ai_score' column in sheet '{safe_sheet_name}'")
wb.save(excel_path)
print("✅ Formatting applied successfully.")
return str(excel_path)
except Exception as e:
print(f"❌ Error applying formatting to Excel file: {e}")
return str(excel_path) # Return path even if formatting fails
And replace it with this new version:
def export_audits_to_excel(job: str, df: pd.DataFrame):
"""
Exports the audited DataFrame to a formatted Excel file with:
- One tab per host.
- 'markdown' column dropped.
- Red-to-Green (1-5) conditional formatting on the 'ai_score' column.
- Professional styling (column widths, alignment, table styles).
"""
print("📊 Exporting final audit to Excel...")
# --- 1. Prepare DataFrame ---
if df.empty:
print("⚠️ DataFrame is empty. Nothing to export.")
return None
# Drop markdown column as requested
df_to_export = df.drop(columns=['markdown'], errors='ignore')
# Extract host to be used for sheet names
try:
df_to_export['host'] = df_to_export['url'].apply(lambda x: urlparse(x).netloc)
except Exception as e:
print(f"❌ Error parsing URLs to get hosts: {e}")
return None
unique_hosts = df_to_export['host'].unique()
# --- 2. Define Paths ---
output_dir = Path("output") / job
output_dir.mkdir(parents=True, exist_ok=True)
excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx"
# --- 3. Write Data to Tabs ---
try:
with pd.ExcelWriter(excel_path, engine='xlsxwriter') as writer:
for host in unique_hosts:
df_host = df_to_export[df_to_export['host'] == host].drop(columns=['host'], errors='ignore')
# Clean host name for sheet title (max 31 chars, no invalid chars)
safe_sheet_name = re.sub(r'[\[\]\*:\?/\\ ]', '_', host)[:31]
df_host.to_excel(writer, sheet_name=safe_sheet_name, index=False)
print(f"✅ Initial Excel file written to {excel_path}")
except Exception as e:
print(f"❌ Error writing to Excel file: {e}")
return None
# --- 4. Apply Formatting (The "Painterly" Pass) ---
try:
print("🎨 Applying professional formatting...")
wb = openpyxl.load_workbook(excel_path)
# --- Define Formatting Rules ---
color_scale_rule = ColorScaleRule(
start_type='num', start_value=1, start_color='F8696B', # Red
mid_type='num', mid_value=3, mid_color='FFEB84', # Yellow
end_type='num', end_value=5, end_color='63BE7B' # Green
)
# Define custom widths
width_map = {
"url": 70,
"title": 50,
"ai_selected_keyword": 30,
"ai_score": 10,
"keyword_rationale": 60,
"status_code": 12,
"redirect_count": 12,
"canonical_url": 60,
"h1_tags": 50,
"h2_tags": 50,
"meta_description": 50,
}
default_width = 18
header_font = Font(bold=True)
header_align = Alignment(horizontal='center', vertical='center', wrap_text=True)
data_align = Alignment(vertical='top', wrap_text=True)
# --- End Formatting Rules ---
for host in unique_hosts:
safe_sheet_name = re.sub(r'[\[\]\*:\?/\\ ]', '_', host)[:31]
if safe_sheet_name in wb.sheetnames:
sheet = wb[safe_sheet_name]
column_mapping = {cell.value: get_column_letter(cell.column) for cell in sheet[1]}
ai_score_col = column_mapping.get('ai_score')
last_row = sheet.max_row
max_col_letter = get_column_letter(sheet.max_column)
if last_row <= 1: # Skip empty sheets
continue
# 1. Apply Column Widths, Header Font/Alignment
for header_text, col_letter in column_mapping.items():
# Set width
width = width_map.get(header_text, default_width)
sheet.column_dimensions[col_letter].width = width
# Set header style
cell = sheet[f"{col_letter}1"]
cell.font = header_font
cell.alignment = header_align
# 2. Apply Data Cell Alignment (Wrap Text, Top Align)
for row in sheet.iter_rows(min_row=2, max_row=last_row):
for cell in row:
cell.alignment = data_align
# 3. Apply Conditional Formatting
if ai_score_col:
range_string = f"{ai_score_col}2:{ai_score_col}{last_row}"
sheet.conditional_formatting.add(range_string, color_scale_rule)
else:
print(f" -> ⚠️ Could not find 'ai_score' column in sheet '{safe_sheet_name}'")
# 4. Apply Table Style (Banded Rows)
table_range = f"A1:{max_col_letter}{last_row}"
table_name = f"AuditTable_{safe_sheet_name}"
tab = Table(displayName=table_name, ref=table_range)
style = TableStyleInfo(name="TableStyleMedium9", showFirstColumn=False,
showLastColumn=False, showRowStripes=True, showColumnStripes=False)
tab.tableStyleInfo = style
if table_name not in [t.name for t in sheet._tables]:
sheet.add_table(tab)
# 5. Apply AutoFilter
sheet.auto_filter.ref = table_range
# 6. Freeze Panes (Freeze top row)
sheet.freeze_panes = 'A2'
wb.save(excel_path)
print("✅ Formatting applied successfully.")
return str(excel_path)
except Exception as e:
print(f"❌ Error applying formatting to Excel file: {e}")
return str(excel_path) # Return path even if formatting fails
2. 🧑💻 Instructions for You (The Human)
No changes are needed to your notebook! The cell you added last is perfect:
# %% [markdown]
# ## 💾 Step 6: Export Final Deliverable
# %%
# This exports the final, audited DataFrame to a formatted Excel file.
excel_file_path = secretsauce.export_audits_to_excel(job, audited_df)
if excel_file_path:
print(f"\n🎉 Success! Deliverable saved to: {excel_file_path}")
else:
print("\n❌ Error during export.")
Just restart the kernel and re-run the cell that calls secretsauce.export_audits_to_excel(job, audited_df). It will now use the new, enhanced function.
Me: Please carry out Gemini Web’s instructions to adjust column widths. Leave anything in the Notebook-side to me. Thank you!
Gemini Web:
✦ Okay, I will replace the export_audits_to_excel function with the new, enhanced version to provide
professional Excel formatting, including adjusted column widths. I will leave the notebook-side
changes to you.
First, I will read the file.
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✓ ReadFile ...Notebooks/imports/url_inspect_sauce.py │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ Okay, I've reviewed the file. I will now replace the current export_audits_to_excel function with
the advanced version you've provided.
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✓ Edit ...Notebooks/imports/url_inspect_sauce.py: def export_audits_to_excel(job... => def exp… │
│ │
│ ... first 23 lines hidden ... │
│ 1147 - print("🎨 Applying conditional formatting...") │
│ 1148 + print("🎨 Applying professional formatting...") │
│ 1149 wb = openpyxl.load_workbook(excel_path) │
│ 1150 │
│ 1150 - # Define the Red-Yellow-Green color scale rule │
│ 1151 - # Red (1) -> Yellow (3) -> Green (5) │
│ 1151 + # --- Define Formatting Rules --- │
│ 1152 color_scale_rule = ColorScaleRule( │
│ 1153 - start_type='num', start_value=1, start_color='F8696B', │
│ 1154 - mid_type='num', mid_value=3, mid_color='FFEB84', │
│ 1155 - end_type='num', end_value=5, end_color='63BE7B' │
│ 1153 + start_type='num', start_value=1, start_color='F8696B', # Red │
│ 1154 + mid_type='num', mid_value=3, mid_color='FFEB84', # Yellow │
│ 1155 + end_type='num', end_value=5, end_color='63BE7B' # Green │
│ 1156 ) │
│ 1157 │
│ 1158 + # Define custom widths │
│ 1159 + width_map = { │
│ 1160 + "url": 70, │
│ 1161 + "title": 50, │
│ 1162 + "ai_selected_keyword": 30, │
│ 1163 + "ai_score": 10, │
│ 1164 + "keyword_rationale": 60, │
│ 1165 + "status_code": 12, │
│ 1166 + "redirect_count": 12, │
│ 1167 + "canonical_url": 60, │
│ 1168 + "h1_tags": 50, │
│ 1169 + "h2_tags": 50, │
│ 1170 + "meta_description": 50, │
│ 1171 + } │
│ 1172 + default_width = 18 │
│ 1173 + │
│ 1174 + header_font = Font(bold=True) │
│ 1175 + header_align = Alignment(horizontal='center', vertical='center', wrap_text=True) │
│ 1176 + data_align = Alignment(vertical='top', wrap_text=True) │
│ 1177 + # --- End Formatting Rules --- │
│ 1178 + │
│ 1179 for host in unique_hosts: │
│ 1159 - safe_sheet_name = re.sub(r'[\\\[\]\\*:\\?\\/\\ ]', '_', host)[:31] │
│ ═════════════════════════════════════════════════════════════════════════════════════════════ │
│ 1180 + safe_sheet_name = re.sub(r'[\\[\\]\\*:?\\/\\ ]', '_', host)[:31] │
│ 1181 if safe_sheet_name in wb.sheetnames: │
│ 1182 sheet = wb[safe_sheet_name] │
│ 1162 - │
│ 1163 - # Find the 'ai_score' column │
│ ═════════════════════════════════════════════════════════════════════════════════════════════ │
│ 1183 column_mapping = {cell.value: get_column_letter(cell.column) for cell in │
│ sheet[1]} │
│ 1184 ai_score_col = column_mapping.get('ai_score') │
│ 1185 + last_row = sheet.max_row │
│ 1186 + max_col_letter = get_column_letter(sheet.max_column) │
│ 1187 │
│ 1188 + if last_row <= 1: # Skip empty sheets │
│ 1189 + continue │
│ 1190 + │
│ 1191 + # 1. Apply Column Widths, Header Font/Alignment │
│ 1192 + for header_text, col_letter in column_mapping.items(): │
│ 1193 + # Set width │
│ 1194 + width = width_map.get(header_text, default_width) │
│ 1195 + sheet.column_dimensions[col_letter].width = width │
│ 1196 + │
│ 1197 + # Set header style │
│ 1198 + cell = sheet[f"{col_letter}1"] │
│ 1199 + cell.font = header_font │
│ 1200 + cell.alignment = header_align │
│ 1201 + │
│ 1202 + # 2. Apply Data Cell Alignment (Wrap Text, Top Align) │
│ 1203 + for row in sheet.iter_rows(min_row=2, max_row=last_row): │
│ 1204 + for cell in row: │
│ 1205 + cell.alignment = data_align │
│ 1206 + │
│ 1207 + # 3. Apply Conditional Formatting │
│ 1208 if ai_score_col: │
│ 1168 - last_row = sheet.max_row │
│ 1169 - if last_row > 1: │
│ ═════════════════════════════════════════════════════════════════════════════════════════════ │
│ 1209 range_string = f"{ai_score_col}2:{ai_score_col}{last_row}" │
│ 1210 sheet.conditional_formatting.add(range_string, color_scale_rule) │
│ 1211 else: │
│ 1212 print(f" -> ⚠️ Could not find 'ai_score' column in sheet ' │
│ {safe_sheet_name}'") │
│ 1213 │
│ 1214 + # 4. Apply Table Style (Banded Rows) │
│ 1215 + table_range = f"A1:{max_col_letter}{last_row}" │
│ 1216 + table_name = f"AuditTable_{safe_sheet_name}" │
│ 1217 + tab = Table(displayName=table_name, ref=table_range) │
│ 1218 + style = TableStyleInfo(name="TableStyleMedium9", showFirstColumn=False, │
│ 1219 + showLastColumn=False, showRowStripes=True, │
│ showColumnStripes=False) │
│ 1220 + tab.tableStyleInfo = style │
│ 1221 + if table_name not in [t.name for t in sheet._tables]: │
│ 1222 + sheet.add_table(tab) │
│ 1223 + │
│ 1224 + # 5. Apply AutoFilter │
│ 1225 + sheet.auto_filter.ref = table_range │
│ 1226 + │
│ 1227 + # 6. Freeze Panes (Freeze top row) │
│ 1228 + sheet.freeze_panes = 'A2' │
│ 1229 + │
│ 1230 wb.save(excel_path) │
│ 1231 print("✅ Formatting applied successfully.") │
│ 1232 return str(excel_path) │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ I've replaced the export_audits_to_excel function with the advanced version as requested. You can
now re-run your notebook cell to generate the newly formatted Excel file.
accepting edits (shift + tab to toggle)
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ > Type your message or @path/to/file │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
~/repos/pipulate no sandbox (see gemini-2.5-pro (65% context | ✖ 1 error (ctrl+o for
(main*) /docs) left) details)
Me: Alright, that’s beautiful. All the column widths are set just right.
Perfecting the Path: Ensuring Consistent Deliverable Output
Okay, I got this out today just barely by the skin of my teeth, and even that was much later that it should have been.
Okay, let’s see. The git diff:
(nix)
[mike@nixos:~/repos/pipulate]$ gdiff
diff --git a/assets/nbs/imports/url_inspect_sauce.py b/assets/nbs/imports/url_inspect_sauce.py
index d89eb652..b31c9dbb 100644
--- a/assets/nbs/imports/url_inspect_sauce.py
+++ b/assets/nbs/imports/url_inspect_sauce.py
@@ -1102,6 +1102,7 @@ def export_audits_to_excel(job: str, df: pd.DataFrame):
- One tab per host.
- 'markdown' column dropped.
- Red-to-Green (1-5) conditional formatting on the 'ai_score' column.
+ - Professional styling (column widths, alignment, table styles).
"""
print("📊 Exporting final audit to Excel...")
@@ -1134,7 +1135,7 @@ def export_audits_to_excel(job: str, df: pd.DataFrame):
df_host = df_to_export[df_to_export['host'] == host].drop(columns=['host'], errors='ignore')
# Clean host name for sheet title (max 31 chars, no invalid chars)
- safe_sheet_name = re.sub(r'[\\\[\]\\*:\\?\\/\\ ]', '_', host)[:31]
+ safe_sheet_name = re.sub(r'[\\[\\]\\*:?\\/\\ ]', '_', host)[:31]
df_host.to_excel(writer, sheet_name=safe_sheet_name, index=False)
print(f"✅ Initial Excel file written to {excel_path}")
@@ -1142,36 +1143,90 @@ def export_audits_to_excel(job: str, df: pd.DataFrame):
print(f"❌ Error writing to Excel file: {e}")
return None
- # --- 4. Apply Formatting ---
+ # --- 4. Apply Formatting (The "Painterly" Pass) ---
try:
- print("🎨 Applying conditional formatting...")
+ print("🎨 Applying professional formatting...")
wb = openpyxl.load_workbook(excel_path)
- # Define the Red-Yellow-Green color scale rule
- # Red (1) -> Yellow (3) -> Green (5)
+ # --- Define Formatting Rules ---
color_scale_rule = ColorScaleRule(
- start_type='num', start_value=1, start_color='F8696B',
- mid_type='num', mid_value=3, mid_color='FFEB84',
- end_type='num', end_value=5, end_color='63BE7B'
+ start_type='num', start_value=1, start_color='F8696B', # Red
+ mid_type='num', mid_value=3, mid_color='FFEB84', # Yellow
+ end_type='num', end_value=5, end_color='63BE7B' # Green
)
-
+
+ # Define custom widths
+ width_map = {
+ "url": 70,
+ "title": 50,
+ "ai_selected_keyword": 30,
+ "ai_score": 10,
+ "keyword_rationale": 60,
+ "status_code": 12,
+ "redirect_count": 12,
+ "canonical_url": 60,
+ "h1_tags": 50,
+ "h2_tags": 50,
+ "meta_description": 50,
+ }
+ default_width = 18
+
+ header_font = Font(bold=True)
+ header_align = Alignment(horizontal='center', vertical='center', wrap_text=True)
+ data_align = Alignment(vertical='top', wrap_text=True)
+ # --- End Formatting Rules ---
+
for host in unique_hosts:
- safe_sheet_name = re.sub(r'[\\\[\]\\*:\\?\\/\\ ]', '_', host)[:31]
+ safe_sheet_name = re.sub(r'[\\[\\]\\*:?\\/\\ ]', '_', host)[:31]
if safe_sheet_name in wb.sheetnames:
sheet = wb[safe_sheet_name]
-
- # Find the 'ai_score' column
column_mapping = {cell.value: get_column_letter(cell.column) for cell in sheet[1]}
ai_score_col = column_mapping.get('ai_score')
-
+ last_row = sheet.max_row
+ max_col_letter = get_column_letter(sheet.max_column)
+
+ if last_row <= 1: # Skip empty sheets
+ continue
+
+ # 1. Apply Column Widths, Header Font/Alignment
+ for header_text, col_letter in column_mapping.items():
+ # Set width
+ width = width_map.get(header_text, default_width)
+ sheet.column_dimensions[col_letter].width = width
+
+ # Set header style
+ cell = sheet[f"{col_letter}1"]
+ cell.font = header_font
+ cell.alignment = header_align
+
+ # 2. Apply Data Cell Alignment (Wrap Text, Top Align)
+ for row in sheet.iter_rows(min_row=2, max_row=last_row):
+ for cell in row:
+ cell.alignment = data_align
+
+ # 3. Apply Conditional Formatting
if ai_score_col:
- last_row = sheet.max_row
- if last_row > 1:
- range_string = f"{ai_score_col}2:{ai_score_col}{last_row}"
- sheet.conditional_formatting.add(range_string, color_scale_rule)
+ range_string = f"{ai_score_col}2:{ai_score_col}{last_row}"
+ sheet.conditional_formatting.add(range_string, color_scale_rule)
else:
print(f" -> ⚠️ Could not find 'ai_score' column in sheet '{safe_sheet_name}'")
+ # 4. Apply Table Style (Banded Rows)
+ table_range = f"A1:{max_col_letter}{last_row}"
+ table_name = f"AuditTable_{safe_sheet_name}"
+ tab = Table(displayName=table_name, ref=table_range)
+ style = TableStyleInfo(name="TableStyleMedium9", showFirstColumn=False,
+ showLastColumn=False, showRowStripes=True, showColumnStripes=False)
+ tab.tableStyleInfo = style
+ if table_name not in [t.name for t in sheet._tables]:
+ sheet.add_table(tab)
+
+ # 5. Apply AutoFilter
+ sheet.auto_filter.ref = table_range
+
+ # 6. Freeze Panes (Freeze top row)
+ sheet.freeze_panes = 'A2'
+
wb.save(excel_path)
print("✅ Formatting applied successfully.")
return str(excel_path)
(nix)
[mike@nixos:~/repos/pipulate]$
Now the output directory is a no-no. If I’m still doing that in GAPalyzer, I’ve
got to change that. You don’t worry about that in GAPalyzer right now (if it is
a problem there). All our output should go into Notebooks/deliverables/
Gemini Web: Context verified.
You’re absolutely right. Committing those wins is key, and standardizing output paths is a crucial part of that “Jiu-Jitsu” control. Having deliverables land in a predictable, version-controlled (or at least .gitignore-aware) location is essential.
You’ve already got the _find_project_root helper function in url_inspect_sauce.py, so we’ll just leverage that to build the correct, robust path.
Here is the implementation plan for Gemini CLI.
Implementation Plan: Correct Deliverable Output Path
Goal: Modify the export_audits_to_excel function in url_inspect_sauce.py to save the final Excel file to Notebooks/deliverables/ instead of output/.
Instructions for Gemini CLI:
-
Edit File:
Notebooks/imports/url_inspect_sauce.py -
Locate: Find the
export_audits_to_excelfunction. -
Action: Replace the block of code under the
# --- 2. Define Paths ---comment with new logic that uses the existing_find_project_roothelper to build the correct path.Specifically, find these lines:
# --- 2. Define Paths --- output_dir = Path("output") / job output_dir.mkdir(parents=True, exist_ok=True) excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx"And replace them with this:
# --- 2. Define Paths --- script_location = Path(__file__).resolve().parent # Notebooks/imports project_root = _find_project_root(script_location) if not project_root: print("❌ Error: Could not find project root. Cannot create deliverables path.") return None output_dir = project_root / "Notebooks" / "deliverables" / job output_dir.mkdir(parents=True, exist_ok=True) excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx"
Inform User (No Notebook Edit Needed):
“Okay, I’ve modified the export_audits_to_excel function. It will now correctly save the final deliverable inside the Notebooks/deliverables/ directory, using the robust _find_project_root helper.
Please restart the kernel and re-run your final export cell (secretsauce.export_audits_to_excel(...)). The new file should appear in the correct location.”
Me: Gemini CLI, please implement Gemini Web’s plan. It’s really just changing the output folder from output to deliverables. Use your discretion on how best to accomplish that.
Gemini CLI:
✦ Okay, I understand. I will modify the export_audits_to_excel function to save the output to the
Notebooks/deliverables/ directory instead of output/, using the robust pathing logic from the plan.
First, I will read the file.
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✓ ReadFile ...Notebooks/imports/url_inspect_sauce.py │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ Okay, I've read the script. I'll now modify the export_audits_to_excel function to use the correct
Notebooks/deliverables/ output path.
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✓ Edit ...Notebooks/imports/url_inspect_sauce.py: # --- 2. Define Paths ---... => # --… │
│ │
│ 1124 unique_hosts = df_to_export['host'].unique() │
│ 1125 │
│ 1126 # --- 2. Define Paths --- │
│ 1127 - output_dir = Path("output") / job │
│ 1127 + script_location = Path(__file__).resolve().parent # Notebooks/imports │
│ 1128 + project_root = _find_project_root(script_location) │
│ 1129 + if not project_root: │
│ 1130 + print("❌ Error: Could not find project root. Cannot create deliverables path.") │
│ 1131 + return None │
│ 1132 + │
│ 1133 + output_dir = project_root / "Notebooks" / "deliverables" / job │
│ 1134 output_dir.mkdir(parents=True, exist_ok=True) │
│ 1135 excel_path = output_dir / f"URLinspector_Audit_{job}.xlsx" │
│ 1136 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ I've updated the export_audits_to_excel function to save output to the Notebooks/deliverables/
directory. The change is complete; you can now re-run your notebook cell.
accepting edits (shift + tab to toggle)
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ > Type your message or @path/to/file │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
~/repos/pipulate no sandbox (see gemini-2.5-pro (61% context | ✖ 1 error (ctrl+o for
(main*) /docs) left) details)
Okay, it’s delivered to Client. And now I rest for a bit. But not until I thought through a few things.
This will be SO MUCH better with the Social Media fields, the Structured Data fields and whether the page has a hero graphic. Maybe video too? Think through what’s best for ecommerce, AI, SERP decoration, and all the rest. Plan for a gradual adding of column-types.
Also plan to abide by the Pipulate persistent workflow way.
Also make the 2nd crawl-pass idempotent.
Also get the rich Rich colors in the DOM boxes and tree output.
Does that about cover it? That last one isn’t even this project but I encountered it along the way.
Reflecting on the Workflow: The Tapestry of AI-Assisted Development
Gemini, put a nice long flowery bow on this article by pulling on whatever threads here you’d like and think are important to humans or AIs following along. Talk about the adventure for as long back as you remember in this discussion thread. I think I started on a prior one in fact, as much as you know about it.
Cover any aspects of any details of this project that you think needs elaboration for an audience that might require being brought up to speed on a lot of the requisite knowledge and background at play here. Feel free to use asides, tangents, suggestions, and consider calling out things that surprised and impressed you, things you’re anticipating. Whatever. Take it away and please and thank you, Gemini.
The time is now 5:30 PM.
Gemini Web: This is a fantastic moment to pause and reflect. Getting a deliverable, a beautifully formatted deliverable, out the door by the skin of your teeth isn’t just a win; it’s a testament to the entire philosophy you’ve been building. It’s the tangible proof that the “Jiu-Jitsu” flow, built on a “bedrock” of stability, actually works under pressure.
🥋 The Jiu-Jitsu Match: A Play-by-Play
This whole journey, especially the final, rapid-fire debugging with Gemini CLI, was a masterclass in that Jiu-Jitsu analogy. It wasn’t a clean, one-shot “Kung Fu” strike. It was a real, gritty grappling match with a series of subtle, frustrating bugs:
- The First Grip: You landed the initial
stack_seo_datafunction, but it failed (FileNotFoundError). - The First Escape & Re-Grip: You instantly diagnosed the
Notebooks/browser_cachepath issue, applied the fix, and re-established control. - The Opponent’s Surprise Move (The
NameError): The kernel restart issue—a classic Jupyter “gotcha.” You handled it. - The Real Fight (The “Ghost”
KeyError): Then came the real opponent. The crypticKeyError: '\n "ai_selected_keyword"'. This is where the “Jiu-Jitsu” truly began. - The “Binary Search” Takedown: Your insistence on
limit=5and adding debug print statements was the key. You didn’t flail; you “tightened the loop,” performing a perfect diagnostic “binary search” that isolated the failure to a single line:full_prompt = system_prompt_wrapper.format(...). - The
UnboundLocalError&NameErrorScramble: The AI, in its eagerness, fumbled the fix—a common occurrence in pair-programming! But because you were in control, you calmly re-stated the problem, re-ran the test, and provided the new error log (NameError: name 'webpage_data_str' is not defined). - The Final “Tap Out”: This pinpoint-accurate feedback allowed the AI to see its own error (deleting the line it was trying to fix) and apply the correct, final solution: restoring
webpage_data_strand, most critically, using.replace('{webpage_data}', ...)instead of.format().
This back-and-forth wasn’t a failure. It was the process. It was high-level human direction grappling with code-level technical execution, a dance that’s only possible when you, the human, have the “agency” and “bedrock” to guide it.
🏛️ The Pillars of This Victory
What’s truly impressive isn’t just the final Excel file; it’s the way it was created, which validates every one of your core principles:
- Nix as the “Mat”: You could restart kernels,
git commit,git push, and re-run cells with absolute confidence. Your environment was stable. You were on solid ground, free to focus 100% on the logic of the match, not on whether the mat itself would collapse. This is the compounding return on stability you’ve championed. - Idempotency as “Stamina”: Your
FAQuilizer-inspired pattern of using JSON caches (audit_cache_urlinspector-01.json) and alimitparameter was your greatest asset. It gave you the stamina to re-run the most complex part of the workflow (the AI loop) in seconds, not minutes. You could afford to fail, debug, and re-try 5, 6, 7 times without exhaustion. - Pandas as the “Prize”: That “beautiful DataFrame” is the result of all this grappling. You successfully wrestled raw data from
seo.mdandhttp_info.jsoninto a single, perfectly staged, AI-ready asset. The final “painterly” step of exporting it to a styled Excel file is just the celebration lap. - The Human-AI Triad: You proved your own point. You acted as the Director, setting the strategy. You used Gemini Web as your “Strategist” to co-develop plans and reflect. And you used Gemini CLI as your “Technician” for the “chisel strikes,” even when it fumbled and needed correction. This isn’t skill atrophy; it’s skill amplification.
🔭 The View from 5:30 PM
Now, at 5:30 PM, with the deliverable sent, the feeling isn’t just relief; it’s leverage. The “bungee cord” has yanked you forward, but in doing so, it has forged a far more powerful tool.
Your “next steps” are no longer just a “would be nice” list. They are the obvious, incremental iterations on a proven, working foundation:
- Make
fetch_http_infoidempotent: A simple, obvious win. Copy the caching pattern fromai_audit_em. Done. - Add Social, Structured Data, Hero Graphics: This is no longer a “project-exploding” nightmare. It’s just:
- A new “chisel strike” in
seo_gadget.pyto extract them (just like you did with thetitle). - A tweak to
stack_seo_datato load them. - A new prompt in the notebook.
- A new
ai_audit_social_emfunction.
- A new “chisel strike” in
- Rich Colors for DOM Tools: A polishing step, a debt to be paid, but one that sits on a stable foundation, waiting for its turn.
You didn’t just finish a task. You solidified a methodology. You proved that by prioritizing a stable bedrock (Nix) and building in resilient patterns (idempotency), you can fearlessly grapple with the complexities of AI development, turning fumbles into wins and building a truly durable, extensible system.
This isn’t just an end-of-day report; it’s a blueprint for how to build in the Age of AI. Well done. Now, you can rest… for a bit.
Book Analysis
Ai Editorial Take
This entry is an interesting and important illustration of the iterative refinement process in AI-assisted software development. It beautifully demonstrates how a core functionality—Excel export—is progressively enhanced from a basic implementation to a professionally formatted, robust deliverable. The constant dialogue and shared context between the human architect and the AI agent reveal a highly effective collaborative "blueprint." The journey, marked by debugging and aesthetic improvements, underscores the value of precision and attention to detail in automated workflows. This piece acts as a foundational segment in the larger tapestry of automating complex data analysis tasks, showcasing the blend of technical execution with thoughtful design for client-facing products. I am anticipating the further evolution of this methodology, particularly with the planned expansions to new data types and enhanced output visualizations.
Title Brainstorm
- Title Option: Automating Professional Excel Deliverables for URL Audit Reports
- Filename:
automating-professional-excel-deliverables-url-audit-reports.md - Rationale: Direct, descriptive, and highlights the core outcome and toolset addressed in this particular article, making it suitable as the primary title.
- Filename:
- Title Option: The Grand Finale: Crafting Client-Ready Excel Exports with AI
- Filename:
grand-finale-client-ready-excel-exports-ai.md - Rationale: Evokes the "home stretch" sentiment from the author’s voice and strongly emphasizes the AI collaboration in achieving a polished deliverable.
- Filename:
- Title Option: From Raw Data to Polished Reports: An AI-Driven Excel Automation Methodology
- Filename:
raw-data-polished-reports-ai-driven-excel-methodology.md - Rationale: Focuses on the transformative journey of data and highlights the underlying ‘methodology’ or ‘way’ of development demonstrated.
- Filename:
- Title Option: Precision Deliverables: An Iterative Blueprint for Formatted Excel Output
- Filename:
precision-deliverables-iterative-blueprint-formatted-excel.md - Rationale: Emphasizes the precision achieved in the Excel output and frames the development as an ‘iterative blueprint’ for future work.
- Filename:
Content Potential And Polish
- Core Strengths:
- Demonstrates a clear, iterative problem-solving process with AI collaboration, including debugging and refinement.
- Provides practical, detailed code examples for complex Excel automation using Pandas and OpenPyXL.
- Highlights the importance of professional data presentation with conditional formatting, dynamic column widths, and table styles.
- Emphasizes robust project structure and consistent output pathing using
_find_project_root. - Showcases a ‘soliloquy’ on the satisfaction and challenges of developing sophisticated data products in an AI-assisted environment.
- Suggestions For Polish:
- Explicitly connect the discussion of ‘the Pipulate persistent workflow way’ to the specific actions and code patterns demonstrated.
- Expand on the broader implications of this type of AI-human collaborative workflow in the ‘Age of AI’ for different industries.
- Add a small ‘Lessons Learned’ section summarizing common pitfalls (like pathing issues or complex regex escaping) and their solutions.
Next Step Prompts
- Brainstorm and outline the technical requirements and data models for incorporating Social Media fields, Structured Data fields, hero graphic status, and video presence into the URL audit, considering their impact on ecommerce, AI, and SERP decoration.
- Design and implement a resilient, idempotent second crawl-pass mechanism for the URL inspector, ensuring data consistency and fault tolerance in the event of interruptions or partial data acquisition, aligning with the Pipulate persistent workflow philosophy.
- Investigate and propose methods for integrating the ‘Rich’ Python library to enhance the visual presentation of terminal outputs, specifically for DOM boxes and codebase tree diagrams, to improve developer experience and clarity.
