Linux, Python, vim, git & nix LPvgn Short Stack
Future-proof your skills and escape the tech hamster wheel with Linux, Python, vim & git — now with nix (LPvgn), an AI stack to resist obsolescence. Follow along as I build next generation AI/SEO tools for porting Jupyter Notebooks to FastHTML / HTMX Web apps using the Pipulate free AI SEO software.

Engineering AI Context: The Holographic Bridge for Self-Hosted Logs

This piece documents my continuous endeavor to establish true data sovereignty and contextual mastery in the era of AI. It details the evolution of my prompt_foo.py tool, which I envision as a living blueprint for weaving together a comprehensive digital awareness-builder. My drive is to create systems that allow me to understand and interact with AI on my own terms, using self-hosted infrastructure and granular data (like web logs) to feed intelligent agents with an unparalleled depth of insight. This isn’t just about code; it’s about building a methodology for augmented intelligence, where my entire knowledge tapestry becomes an active, queryable resource for AI collaboration.

Setting the Stage: Context for the Curious Book Reader

In the Age of AI, the ability to provide precise, comprehensive context to large language models is paramount. This essay details an important step in that journey: the development of prompt_foo.py, a versatile tool designed to synthesize various layers of personal knowledge and codebase information into a coherent prompt. What began as a simple method for gathering files evolved into a sophisticated blueprint for what we call the ‘Holographic Bridge’—a system that stitches together narrative summaries, full article content, and rich semantic metadata (our ‘Holographic Context Shards’) from a self-hosted knowledge base. This philosophy is about establishing data sovereignty and creating an intelligent feedback loop, allowing an AI assistant to gain a deep, ‘Absolute Coordinate Certainty’ understanding of an evolving codebase and the insights gleaned from actively monitoring the web’s AI bot traffic. Join us as we explore the iterative process, the challenges encountered with generative AI models, and the surgical precision required to build robust, context-aware systems for the future.


Technical Journal Entry Begins

Okay so we just took a Nix flake that I already had and did a light touch to prepare it to be how self-hosted GitHub Pages so that I can watch AI-bot traffic. I’m working towards home-hosting simple websites so I can watch the log files like fish tanks perchance to get a better handle on the evolving landscape.

A moment to explain Nix flakes to the uninitiated. Technology has evolved far enough so that the particular details of this hardware or that should never be a showstopper. Bundles of applications, programs, services or whatever you want to call them should be able to float from machine to machine — and without the incredible complexity of Kubernetes and opacity of Docker. This sort of Infrastructure as Code should just be the way things work without all this heavy lifting.

And indeed it is. That’s what Nix flakes are. They work with macOS, Windows (WSL), Linux and even FreeBSD Unix. It’s just a generic normalized Linux that solves the “not on my machine” problem and delivers on the long promise of “write once, run anywhere.” And Nix isn’t the only game in town for this. The GNU Project, the same people who brought you all the parts of Linux you know (the commands, the GNOME desktop, etc) bring you the Nix clone, Guix. It’s much the same thing but now multi-sourced and validated as a core OS method to mathematically guaranteed reproducible systems.

Infrastructure floats. That’s Nix flakes.

Nix Flakes and the Infrastructure-as-Code Dream

So we took one of my pre-existing Nix flakes whose purpose it was to preview sites made with the GitHub Pages system that converts text files using the simple page markup format known as markdown and converts them to HTML for the web browser and humans, and we expanded it a little bit by including the industrial strength free and open source and standard nginx webserver. These flakes can now be run in a live-reload development mode when you’re making the site or a production mode to host the site. We have effectively unified the flake used during local development and the flake used in normally remote hosting.

This site publishing system is also known as the Jekyll Static Site Generator (SSG) and it uses the same template language as Shopify. Such sites have become popular because it was one of the first SSG systems to demonstrate the advantages of a static pre-rendered site to a large audience. And because it was created by one of the co-founders of GitHub, it became the built-in default (and free) static site generator for anyone hosting their git repos on GitHub. The system is known as GitHub pages there and is often used for hosting the git repo project’s documentation.

As generous as this is, it still has shortcomings. Ironically it’s the same shortcomings as hosting an e-commerce site on Shopify, and that is not having access to your web log files. Whether you’re hosting documentation on GitHub using the Jekyll SSG or an e-commerce site on Shopify using those same Liquid Templates, you’re cut off from the web log files.

The Imperative of Web Log Sovereignty

Why does this matter so much, especially today during the rise of AI? It’s because there are so many things about the new landscape of online existence that are in fluctuation that it becomes necessary to keep your finger on the pulse constantly. And because the AI companies send out at least two discrete different kinds of bots, one to scrape and one to help RAG results, all the knowledge of their activities and behaviors are in the seldom looked and and usually difficult to access and interact with web logs.

Decoding AI Bot Behavior Through Raw Logs

Right now we should recently be able to use almost any piece of Intel x86 or ARM64 style piece or hardware — and in the future probably RISC V free and open source (design) hardware too — to host these Jekyll static sites. The biggest challenge is probably just putting it on the network in the correct way such that outside web traffic can reach it, to make the adjustment to DNS so that requests to MikeLev.in are routed there, and taking care of the security certificate issue so that visits to that site don’t cause browser security warnings.

All the context about my home hosting network is in my articles. It’s still a somewhat high friction process to rg (ripgrep) against my _posts/ folder and to know what articles to put into context. Consequently there is another potential rabbit hole project I need to investigate here having to do with painting the context for the AI coding assistant again. And this time it’s looking for a reasonable way to put exactly the right full-article content into context from the _posts/ folder and if I knock out this project quickly it could be a major force multiplier and accelerator.

Building the prompt_foo.py Context Engine

The entire index of _posts/ including titles of the articles (headlines) and the description metadata easily fits on the context window of the model and the 1-million byte paste truncation limit of the web submit form for Gemini Web. And that’s easily produced with the -l [:] argument of prompt_foo.py. Full article content from within a similar Python slice API-defined range can similarly be included with the already existing -l [-5:] argument where this would pull the full content of the last 5 articles.

Introducing the Holographic Bridge: prompt_foo.py’s New -c Argument

However what is not included is the enhanced context that has been produced in the _posts/_context/folder where there is one .json file for every .md file in the parent folder which aside from the extension uses the exact same file name, so there is a 1-to-one mapping.

The size of all these json files concatenated together still tidily fits into the context window and the paste limitations.

Very frequently articles have subtopics that do not show in the -l [:] index which are still critical if we were to decide what full-article context to pull to construct the best possible AI_PHOOEY_CHOP to equip you with everything I’ve talked about on that topic in the past to equip you for the best possible context for providing the best possible coding assistance.

So I propose using the very same API that’s used for -l and -a but now for -c in order to concatenate ranges of the .json files from the _posts/_context/ folders. To create a Prompt Fu context-drop with the entire article index and the concatenation of the entire folder of json-files, the argument would be: -l [:] -c [:]. It would all fit even within the 1-million byte limit just fine. And it would give you everything necessary to know which articles to ask for. The index from -l gives the absolute file-path so you could even give back the exact AI_PHOOEY_CHOPs to pull the exact articles you’re interested in, like:

AI_PHOOEY_CHOP = """\
/home/mike/repos/MikeLev.in/_posts//2025-12-14-semantic-clustering-rule-of-7-ai-friendly-site-hierarchy.md
/home/mike/repos/MikeLev.in/_posts//2025-12-15-ai-ready-web-navigation-caching.md
/home/mike/repos/MikeLev.in/_posts//2025-12-15-industrializing-intelligence-ai-content-pipelines.md
/home/mike/repos/MikeLev.in/_posts//2025-12-15-the-gold-pan-hybrid-hierarchies-ai.md
"""

The only last thing is some sort of search. It’s hardly needed if I give you the full article index content extractions because you’re the search as a result of a prompt like this bundled in with those. But then also I could always facilitate it by putting the output of rg in here, such as. Hmmm.

Me: The use of rg (ripgrep) so that the search is case insensitive and also this word or that word.

Different Gemini thread: To use rg (ripgrep) to search for “this word OR that word” while ignoring case, you can use the -i flag combined with a regular expression or multiple pattern flags.

Here are the two best ways to do it:

Option 1: Using a Regular Expression (Best for simple lists)

You can use the pipe character (|) to separate the words you want to match. You should wrap the search pattern in quotes to ensure the shell doesn’t misinterpret the special characters.

rg -i "word1|word2"

  • -i: Makes the search case-insensitive.
  • "|": Acts as the “OR” operator.

Option 2: Using Multiple Flags (Best for many words)

If you have a long list of words or if your words contain special characters that might mess up a regex, you can use the -e flag multiple times.

rg -i -e word1 -e word2 -e word3

  • -e: Specifies a pattern to search for. rg will match any line containing any of the patterns provided.

Comparison of Methods

Feature Regex Method ("a|b") Multiple Flags (-e a -e b)
Readability Good for 2-3 words. Better for long lists.
Escaping You must escape special regex chars (e.g., \|, \.). Safer for complex strings.
Example rg -i "error|fail" rg -i -e error -e fail

Pro Tip: Smart Case

Instead of forcing case insensitivity with -i, you can use -S (Smart Case).

  • If your pattern is all lowercase (rg -S "foo"), it searches case-insensitively (matches Foo, FOO, foo).
  • If you include an uppercase letter (rg -S "Foo"), it automatically switches to case-sensitive (matches Foo, but not foo).
rg -S "this|that"

Would you like to know how to inverse the match (search for lines that do not contain these words) or how to filter this search by specific file types?

Me: Right, right. So I could facilitate the prompt with something like this:

[mike@nixos:~/repos/MikeLev.in/_posts]$ rg -S -l "pfsense|home host"
2025-04-23-pfsense-firewall-secure-home-network-hosting-setup.md
2025-04-29-nixos-jekyll-git-push-self-hosted-deployment.md
2025-09-12-web-cleanup-ai-readability-htmx.md
_context/2025-05-02-home-hosting-bots-seo-signals-google-dominance.json
2025-05-23-force-multiplying-ikigai-in-ai-age.md
_context/2025-04-23-pfsense-firewall-secure-home-network-hosting-setup.json
2025-10-08-nix-flake-quiet-mode-debugging-saga.md
2025-05-02-home-hosting-bots-seo-signals-google-dominance.md
2025-09-05-teach-ai-niche-framework-privacy-mode.md
2025-09-12-git-branch-takeover-promote-feature-branch.md
2025-04-17-github-pages-logfiles.md
2025-05-08-github-pages-home-hosting-jekyll.md
2025-04-29-git-revert-specific-files-jekyll-traffic.md
_context/2025-05-08-github-pages-home-hosting-jekyll.json
2025-10-08-ai-vs-ai-debugging-saga.md
2025-09-06-ai-platform-wars-developer-guide.md
2025-10-10-forging-ais-eyes-collaborative-debugging-saga.md
2025-05-22-the-calm-before-the-nlweb.md
2025-05-11-google-login-test-selenium-ai.md
2025-09-12-headless-shopify-python-jekyll.md
2025-06-23-wet-code-ai-native-development.md

[mike@nixos:~/repos/MikeLev.in/_posts]

And equipped with that plus everything else from -l (which has the token-size counts of the articles by the way) and -c, you could make a very precision request for the next round of full-article context out of the choices. And we wouldn’t need to use the -a parameter to do it by slice, either. We just construct the AI_PHOOEY_CHOP.

Neato, huh? I’ll start out with this so you can really see how prompt_foo.py works, see the json structure of the context and even how they’re generated. Plus you can see the big article index.

AI_PHOOEY_CHOP = """\
scripts/articles/contextualizer.py
/home/mike/repos/MikeLev.in/_posts/_context/2025-12-14-semantic-clustering-rule-of-7-ai-friendly-site-hierarchy.json
/home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-ai-ready-web-navigation-caching.json
/home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-industrializing-intelligence-ai-content-pipelines.json
/home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-the-gold-pan-hybrid-hierarchies-ai.json
foo_files.py
prompt_foo.py

…and:

[mike@nixos:~/repos/pipulate]$ python prompt_foo.py -l [:]

I can haz implementation plan? You can just give me a whole new prompt_foo.py if you’re up for it. You could also do it in multiple passes if you want to bank little wins of how to formalize the now increasingly common slice API handling, which now will be on a third parameter. I realize we will face challenges with full generational file-replacement as it grows larger but my confidence is growing that you (Gemini 3) are up to it based on recent experiences. Nonetheless I can “feel” the file growing and if you think an organization pass is wise before doing the -c argument I’m down with that. I also as a matter of course git commit right before replacing files like prompt_foo.py and in the follow-up I show you the git diff, just as an FYI. So there’s a lot of safetynet here and ability to iteratively improve on your past round of work so don’t feel like you have to boil the ocean.

Gemini got this far in the code before it copped out:

#!/usr/bin/env python3
# prompt_foo.py

# > We've got content, it's groovy context
# > Our concatenation just won't stop
# > Making stories art for a super-smart
# > AI-Phooey chop (Hi-Ya!)

import os
import re
import sys
import pydot
import yaml
import argparse
import tiktoken
import subprocess
import tempfile
import shutil
import json
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Any, Union

try:
    import jupytext
    JUPYTEXT_AVAILABLE = True
except ImportError:
    JUPYTEXT_AVAILABLE = False

# ============================================================================
# --- Logging & Capture ---
# ============================================================================
class Logger:
    """Captures stdout for inclusion in the generated prompt."""
    def __init__(self):
        self.logs = []

    def print(self, *args, **kwargs):
        # Construct the string exactly as print would
        sep = kwargs.get('sep', ' ')
        end = kwargs.get('end', '\n')
        text = sep.join(map(str, args)) + end
        
        # Capture it
        self.logs.append(text)
        
        # Actually print it to stdout
        print(*args, **kwargs)

    def get_captured_text(self):
        return "".join(self.logs)

# Global logger instance
logger = Logger()

def load_targets():
    """Loads publishing targets from external config."""
    config_path = os.path.expanduser("~/.config/articleizer/targets.json")
    if os.path.exists(config_path):
        try:
            with open(config_path, 'r') as f:
                return json.load(f)
        except json.JSONDecodeError:
            logger.print(f"Warning: Could not decode JSON from {config_path}")
    return {}

# ============================================================================
# --- Configuration ---
# ============================================================================
def find_repo_root(start_path: str) -> str:
    """Find the git repository root from a starting path."""
    path = os.path.abspath(start_path)
    while path != os.path.dirname(path):
        if os.path.isdir(os.path.join(path, '.git')):
            return path
        path = os.path.dirname(path)
    raise FileNotFoundError("Could not find the repository root (.git directory).")

REPO_ROOT = find_repo_root(os.path.dirname(__file__))

CONFIG = {
    "PROJECT_NAME": "pipulate",
    "POSTS_DIRECTORY": "/home/mike/repos/MikeLev.in/_posts",
    "URL_MAP": {} # Populated if needed or loaded from config
}

# ============================================================================
# --- Literary Size Scale & Token/Word Counting ---
# ============================================================================
LITERARY_SIZE_SCALE = [
    (3000, "Short Essay"), (7500, "Short Story"), (20000, "Novelette"),
    (50000, "Novella or a Master's Dissertation"),
    (80000, "Average Paperback Novel or a Ph.D. Dissertation"),
    (120000, "Long Novel"), (200000, "Epic Fantasy Novel"),
    (500000, "Seriously Long Epic (like 'Infinite Jest')"),
]

def get_literary_perspective(word_count: int, token_word_ratio: float) -> str:
    description = f"Longer than {LITERARY_SIZE_SCALE[-1][1]}"
    for words, desc in LITERARY_SIZE_SCALE:
        if word_count <= words:
            description = desc
            break
    density_warning = ""
    if token_word_ratio > 1.8:
        density_warning = (
            f" (Note: With a token/word ratio of {token_word_ratio:.2f}, "
            f"this content is far denser and more complex than typical prose of this length)."
        )
    return f"📚 Equivalent in length to a **{description}**{density_warning}"

def count_tokens(text: str, model: str = "gpt-4o") -> int:
    try:
        encoding = tiktoken.encoding_for_model(model)
        return len(encoding.encode(text))
    except Exception:
        return len(text.split())

def count_words(text: str) -> int:
    return len(text.split())

# ============================================================================
# --- Auto-Context Generation (UML, Tree, Narrative) ---
# ============================================================================
def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
    pyreverse_exec = shutil.which("pyreverse")
    plantuml_exec = shutil.which("plantuml")
    if not pyreverse_exec or not plantuml_exec:
        msg = []
        if not pyreverse_exec: msg.append("`pyreverse` (from pylint)")
        if not plantuml_exec: msg.append("`plantuml`")
        return {"ascii_uml": f"Skipping: Required command(s) not found: {', '.join(msg)}."}

    target_path = target_file if os.path.isabs(target_file) else os.path.join(REPO_ROOT, target_file)
    if not os.path.exists(target_path):
        return {"ascii_uml": f"Skipping: Target file for UML generation not found: {target_path}"}

    with tempfile.TemporaryDirectory() as temp_dir:
        dot_file_path = os.path.join(temp_dir, "classes.dot")
        puml_file_path = os.path.join(temp_dir, "diagram.puml")
        try:
            pyreverse_cmd = [pyreverse_exec, "-f", "dot", "-o", "dot", "-p", project_name, target_path]
            subprocess.run(pyreverse_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
            generated_dot_name = f"classes_{project_name}.dot"
            os.rename(os.path.join(temp_dir, generated_dot_name), dot_file_path)
        except (subprocess.CalledProcessError, FileNotFoundError) as e:
            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
            return {"ascii_uml": f"Error: pyreverse failed. {error_msg}", "dot_graph": None}

        try:
            graphs = pydot.graph_from_dot_file(dot_file_path)
            if not graphs:
                return {"ascii_uml": f"Note: No classes found in {target_file} to generate a diagram.", "dot_graph": None}
            graph = graphs[0]
            dot_content = graph.to_string()
            puml_lines = ["@startuml", "skinparam linetype ortho", ""]
            def sanitize_line(line):
                clean = re.sub(r'<br[^>]*>', '', line)
                clean = re.sub(r'<[^>]+>', '', clean)
                return clean.strip()
            for node in graph.get_nodes():
                label = node.get_label()
                if not label: continue
                parts = label.strip('<>{} ').split('|')
                class_name = sanitize_line(parts[0])
                puml_lines.append(f"class {class_name} {{")
                if len(parts) > 1:
                    for attr in re.split(r'<br[^>]*>', parts[1]):
                        clean_attr = sanitize_line(attr).split(':')[0].strip()
                        if clean_attr: puml_lines.append(f"  - {clean_attr}")
                if len(parts) > 2:
                    method_block = parts[2].strip()
                    for method_line in re.split(r'<br[^>]*>', method_block):
                        clean_method = sanitize_line(method_line)
                        if clean_method: puml_lines.append(f"  + {clean_method}")
                puml_lines.append("}\n")
            for edge in graph.get_edges():
                source_name = edge.get_source().strip('"').split('.')[-1]
                dest_name = edge.get_destination().strip('"').split('.')[-1]
                puml_lines.append(f"{source_name} ..> {dest_name}")
            puml_lines.append("@enduml")
            with open(puml_file_path, 'w') as f: f.write('\n'.join(puml_lines))
        except Exception as e:
            with open(dot_file_path, 'r') as f: dot_content_on_error = f.read()
            return {"ascii_uml": f"Error: DOT to PUML conversion failed. {str(e)}", "dot_graph": dot_content_on_error}

        try:
            plantuml_cmd = ["plantuml", "-tutxt", puml_file_path]
            subprocess.run(plantuml_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
            utxt_file_path = puml_file_path.replace(".puml", ".utxt")
            with open(utxt_file_path, 'r') as f: ascii_uml = f.read()
            lines = ascii_uml.splitlines()
            non_empty_lines = [line for line in lines if line.strip()]
            if non_empty_lines:
                min_indent = min(len(line) - len(line.lstrip(' ')) for line in non_empty_lines)
                dedented_lines = [line[min_indent:] for line in lines]
                stripped_lines = [line.rstrip() for line in dedented_lines]
                ascii_uml = '\n'.join(stripped_lines)
                if ascii_uml: ascii_uml = '\n' + ascii_uml
        except (subprocess.CalledProcessError, FileNotFoundError) as e:
            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
            return {"ascii_uml": f"Error: plantuml failed. {error_msg}", "dot_graph": dot_content}

    return {"ascii_uml": ascii_uml, "dot_graph": dot_content}

def _get_article_list_data(posts_dir: str = CONFIG["POSTS_DIRECTORY"]) -> List[Dict]:
    posts_data = []
    if not os.path.isdir(posts_dir):
        logger.print(f"Warning: Article directory not found at {posts_dir}", file=sys.stderr)
        return []

    # Simple URL config loader if ~/.config/articleizer/url_map.json exists
    url_config = {}
    config_path = os.path.expanduser("~/.config/articleizer/url_map.json")
    if os.path.exists(config_path):
        try:
            with open(config_path) as f:
                url_map = json.load(f)
                url_config = url_map.get(posts_dir, {})
        except: pass

    for filename in os.listdir(posts_dir):
        if not filename.endswith((".md", ".markdown")): continue
        filepath = os.path.join(posts_dir, filename)
        try:
            date_str = filename[:10]
            try:
                post_date = datetime.strptime(date_str, '%Y-%m-%d').date()
            except ValueError:
                # Fallback if filename doesn't start with date
                post_date = datetime.min.date()

            with open(filepath, 'r', encoding='utf-8') as f: content = f.read()
            
            # Simple frontmatter parse
            if content.startswith('---'):
                parts = content.split('---', 2)
                front_matter = yaml.safe_load(parts[1]) or {}
                
                full_url = ""
                if url_config:
                    slug = front_matter.get('permalink', '').strip('/')
                    if not slug:
                        raw_slug = os.path.splitext(filename)[0]
                        # Strip date prefix if present for slug
                        if re.match(r'\d{4}-\d{2}-\d{2}-', raw_slug):
                             raw_slug = raw_slug[11:]
                        style = url_config.get('permalink_style', '/:slug/')
                        slug_path = style.replace(':slug', raw_slug)
                    else:
                          slug_path = "/" + slug.lstrip('/')
                    full_url = f"{url_config.get('base_url', '')}{slug_path}"

                article_tokens = count_tokens(content)
                article_bytes = len(content.encode('utf-8'))
                
                posts_data.append({
                    'path': filepath,
                    'filename': filename,
                    'date': post_date,
                    'sort_order': int(front_matter.get('sort_order', 0)),
                    'title': front_matter.get('title', 'Untitled'),
                    'summary': front_matter.get('meta_description', front_matter.get('description', '')),
                    'url': full_url,
                    'tokens': article_tokens,
                    'bytes': article_bytes
                })
        except (ValueError, yaml.YAMLError, IndexError, OSError): 
            continue
            
    # Sort by date (descending usually preferred for blogs, but we sort ascending then can slice)
    # Actually, standard blog order is usually reverse chrono. 
    # Let's sort Oldest -> Newest so [:] makes chronological sense, or [-5:] gets most recent.
    return sorted(posts_data, key=lambda p: (p['date'], p['sort_order']))

def parse_slice_arg(arg_str: str) -> Optional[Union[int, slice]]:
    if not arg_str: return None
    # Handle simple integer "5" as "[-5:]" shortcut? 
    # No, keep it Pythonic. User must provide brackets for slice.
    if not (arg_str.startswith('[') and arg_str.endswith(']')):
        return None
        
    content = arg_str[1:-1].strip()
    if ':' in content:
        parts = content.split(':', 1)
        start = int(parts[0].strip()) if parts[0].strip() else None
        end = int(parts[1].strip()) if parts[1].strip() else None
        return slice(start, end)
    elif content:
        return int(content)
    return slice(None, None)

def run_tree_command() -> str:
    eza_exec = shutil.which("eza")
    if not eza_exec: return "Skipping: `eza` command not found."
    try:
        # Added --level 3 to keep the tree from exploding if the repo grows deeper
        result = subprocess.run(
            [eza_exec, '--tree', '--level', '3', '--git-ignore', '--color=never'],
            capture_output=True, text=True, cwd=REPO_ROOT, check=True
        )
        return result.stdout
    except Exception as e: return f"Error running eza command: {e}"

# ============================================================================
# --- Helper Functions (File Parsing, Clipboard) ---
# ============================================================================
def parse_file_list_from_config() -> List[Tuple[str, str]]:
    try:
        import foo_files
        files_raw = foo_files.AI_PHOOEY_CHOP
    except (ImportError, AttributeError):
        logger.print("ERROR: foo_files.py not found or doesn't contain AI_PHOOEY_CHOP.")
        sys.exit(1)
    lines = files_raw.strip().splitlines()
    seen_files, parsed_files = set(), []
    for line in lines:
        line = line.strip()
        if not line or line.startswith('#'): continue
        parts = re.split(r'\s*<--\s*|\s*#\s*', line, 1)
        file_path = parts[0].strip()
        comment = parts[1].strip() if len(parts) > 1 else ""
        if file_path and file_path not in seen_files:
            seen_files.add(file_path)
            parsed_files.append((file_path, comment))
    return parsed_files

def copy_to_clipboard(text: str):
    if not shutil.which('xclip'):
        logger.print("\nWarning: 'xclip' not found. Cannot copy to clipboard.")
        return
    try:
        subprocess.run(['xclip', '-selection', 'clipboard'], input=text.encode('utf-8'), check=True)
        logger.print("Markdown output copied to clipboard")
    except Exception as e:
        logger.print(f"\nWarning: Could not copy to clipboard: {e}")

def check_dependencies():
    logger.print("Checking for required external dependencies...")
    dependencies = {
        "pyreverse": "Provided by `pylint`. Install with: pip install pylint",
        "plantuml": "A Java-based tool. See https://plantuml.com/starting",
        "eza": "A modern replacement for `ls`. See https://eza.rocks/install",
        "xclip": "Clipboard utility for Linux. Install with your package manager (e.g., sudo apt-get install xclip)",
    }
    missing = []
    for tool, instructions in dependencies.items():
        if not shutil.which(tool):
            missing.append((tool, instructions))
    
    if not missing:
        logger.print("✅ All dependencies found.")
    else:
        logger.print("\n❌ Missing dependencies detected:")
        for tool, instructions in missing:
            logger.print(f"  - Command not found: `{tool}`")
            logger.print(f"    ↳ {instructions}")
        logger.print("\nPlease install the missing tools and ensure they are in your system's PATH.")
        sys.exit(1)

# ============================================================================
# --- Refined PromptBuilder Class ---
# ============================================================================
class PromptBuilder:
    """
    Builds a complete, structured Markdown prompt with consistent START/END markers.
    Includes a convergence loop to ensure the Summary section reflects the final token count.
    """
    def __init__(self, processed_files: List[Dict], prompt_text: str, context_only: bool = False, 
                 list_arg: Optional[str] = None, context_arg: Optional[str] = None):
        self.processed_files = processed_files
        self.prompt_text = prompt_text
        self.context_only = context_only
        self.list_arg = list_arg
        self.context_arg = context_arg
        self.auto_context = {}
        self.all_sections = {}
        self.command_line = " ".join(sys.argv)
        self.manifest_key = "Manifest (Table of Contents)"

    def add_auto_context(self, title: str, content: str):
        # Filter Logic to ensure we don't add empty or error-heavy sections unintentionally
        # Allowed titles:
        allowed_titles = [
            "Recent Narrative Context", 
            "Full Article Content", 
            "Holographic Context Shards",
            "Codebase Structure (eza --tree)"
        ]
        
        is_allowed = title in allowed_titles or "UML" in title
        content_is_valid = bool(content) and content.strip()
        
        # Simple heuristic to avoid adding sections that are just error messages
        filter_passed = "error" not in content.lower() and "skipping" not in content.lower()
        
        if content_is_valid and (is_allowed or filter_passed):
            self.auto_context[title] = {
                'content': content, 
                'tokens': count_tokens(content), 
                'words': count_words(content)
            }

    def _build_manifest_content(self) -> str:
        lines = []
        # Added Summary to section order
        section_order = ["Story", "File Tree", "UML Diagrams", "Articles", "Codebase", "Summary", "Context Recapture", "Prompt"]
        for section_name in section_order:
            if section_name in self.all_sections:
                data = self.all_sections[section_name]
                token_str = f"({data['tokens']:,} tokens)" if data['tokens'] > 0 else ""
                lines.append(f"- {section_name} {token_str}")
                
                # Detailed list for Codebase for searching (absolute paths)
                if section_name == "Codebase" and not self.context_only and self.processed_files:
                     for f in self.processed_files:
                         byte_len = len(f['content'].encode('utf-8'))
                         lines.append(f"  - {f['path']} ({f['tokens']:,} tokens | {byte_len:,} bytes)")
                         
        return "\n".join(lines)

    def _build_story_content(self) -> str:
        title = "Recent Narrative Context"
        return self.auto_context.get(title, {}).get('content', '').strip()

    def _build_tree_content(self) -> str:
        title = "Codebase Structure (eza --tree)"
        if title in self.auto_context:
            content = self.auto_context[title]['content'].strip()
            return f"```text\n{content}\n```"
        return ""

    def _build_uml_content(self) -> str:
        uml_parts = []
        for title, data in self.auto_context.items():
            if "UML Class Diagram" in title:
                uml_parts.append(f"## {title}\n```text\n{data['content']}\n```")
        return "\n\n".join(uml_parts)

    def _build_articles_content(self) -> str:
        parts = []
        # 1. Full Content
        title_full = "Full Article Content"
        if title_full in self.auto_context:
            parts.append(self.auto_context[title_full]['content'].strip())
        
        # 2. Holographic Context (JSONs)
        title_holo = "Holographic Context Shards"
        if title_holo in self.auto_context:
            parts.append(self.auto_context[title_holo]['content'].strip())
            
        return "\n\n".join(parts).strip()

    def _build_codebase_content(self) -> str:
        if self.context_only: return ""
        if not self.processed_files: return ""
        
        lines = []
        for f in self.processed_files:
            # Using Absolute Paths in markers
            lines.append(f"--- START: {f['path']} ({f['tokens']:,} tokens) ---")
            lines.append(f"```{f['lang']}:{f['path']}")
            lines.append(f['content'])
            lines.append("```")
            lines.append(f"--- END: {f['path']} ---\n")
        return "\n".join(lines).strip()

    def _build_recapture_content(self) -> str:
        """Generates the commented-out variable block for reconstructing this context."""
        lines = ["```python", "# # PURPOSE OF CONTEXT: ", '# AI_PHOOEY_CHOP = """\\']
        for f in self.processed_files:
            path_str = f['path']
            # Keep relative if inside repo, absolute if outside
            if path_str.startswith(REPO_ROOT):
                path_str = os.path.relpath(path_str, REPO_ROOT)
            lines.append(f"# {path_str}")
        lines.append('# """')
        lines.append("```")
        return "\n".join(lines)

    def _build_prompt_content(self) -> str:
        checklist = self._generate_ai_checklist()
        return f"{checklist}\n\n{self.prompt_text}"

    def _generate_ai_checklist(self) -> str:
        return '''# AI Self-Correction Checklist

Before addressing the user's prompt, perform the following verification steps:

1.  **Review the Manifest vs. Codebase Structure:** Compare the file list in the manifest against the `eza --tree` output. Are there any obviously related, critical files missing from the manifest that would be necessary to understand the user's request? (e.g., if `core.py` is present, is `__init__.py` also present?).
2.  **Analyze Import Statements:** Briefly scan the `import` statements in the provided Python files. Do they suggest dependencies on local files that were *not* included in the manifest?
3.  **Check for Incompleteness:** If you determine that critical files are missing, do not proceed. Instead, your **primary task** is to inform me of the missing files and recommend adding them to `foo_files.py` to create a more complete context.
4.  **Confirm Understanding:** If the context appears complete, state "Context verified." and then proceed with the user's request.
5.  **Descriptions:** When describing the passion represented here, you may refer to it as a blueprint, treatise, soliloquy, methodology, philosophy or way. NEVER refer to it as a manifesto which has a negative connotation.
'''

    def _generate_summary_content(self, verified_token_count: int) -> str:
        """Generates the content for the Summary section."""
        lines = []
        
        # Command Line
        lines.append(f"**Command:** `{self.command_line}`\n")

        # Execution Log (Captured from Logger)
        logs = logger.get_captured_text().strip()
        if logs:
            lines.append("--- Processing Log ---")
            lines.append(f"```\n{logs}\n```\n")

        # Files Included
        lines.append("--- Files Included ---")
        for f in self.processed_files:
            if self.context_only:
                lines.append(f"• {f['path']} (content omitted)")
            else:
                byte_len = len(f['content'].encode('utf-8'))
                lines.append(f"• {f['path']} ({f['tokens']:,} tokens | {byte_len:,} bytes)")
        
        if self.auto_context:
            lines.append("\n--- Auto-Context Included ---")
            for title, data in self.auto_context.items():
                byte_len = len(data['content'].encode('utf-8'))
                lines.append(f"• {title} ({data['tokens']:,} tokens | {byte_len:,} bytes)")

        # Metrics
        total_tokens = sum(v.get('tokens', 0) for k, v in self.all_sections.items() if k != self.manifest_key)
        
        total_words = 0
        final_content_for_metrics = ""
        for section, data in self.all_sections.items():
            content_part = data.get('content', '')
            final_content_for_metrics += content_part
            if section != "Prompt":
                total_words += count_words(content_part)

        char_count = len(final_content_for_metrics)
        byte_count = len(final_content_for_metrics.encode('utf-8'))

        lines.append("\n--- Prompt Summary ---")
        if self.context_only:
            lines.append("NOTE: Running in --context-only mode. File contents are excluded.")
        
        lines.append(f"Summed Tokens:    {total_tokens:,} (from section parts)")
        lines.append(f"Verified Tokens: {verified_token_count:,} (from final output)")
        
        if total_tokens != verified_token_count:
            diff = verified_token_count - total_tokens
            lines.append(f"  (Difference: {diff:+,})")
            
        lines.append(f"Total Words:      {total_words:,} (content only)")
        lines.append(f"Total Chars:      {char_count:,}")
        lines.append(f"Total Bytes:      {byte_count:,} (UTF-8)")

        # Literary Perspective
        ratio = verified_token_count / total_words if total_words > 0 else 0
        perspective = get_literary_perspective(total_words, ratio)
        lines.append("\n--- Size Perspective ---")
        lines.append(perspective)

        return "\n".join(lines)

    def build_final_prompt(self) -> str:
        """Assembles all parts into the final Markdown string with convergence loop for accuracy."""
        
        # 1. Build static sections
        story_content = self._build_story_content()
        tree_content = self._build_tree_content()
        uml_content = self._build_uml_content()
        articles_content = self._build_articles_content()
        codebase_content = self._build_codebase_content()
        recapture_content = self._build_recapture_content()
        prompt_content = self._build_prompt_content()

        # Placeholders
        placeholders = {
            "Story": f"# Narrative context not requested. Use the -l or --list flag to include recent articles.",
            "File Tree": "# File tree generation failed or was skipped.",
            "UML Diagrams": "# No Python files with classes were included, or UML generation failed.",
            "Articles": "# No full articles requested. Use the -a or --article flag to include full article content.",
            "Codebase": ("# No files were specified for inclusion in the codebase." if not self.processed_files 
                         else "# Running in --context-only mode. File contents are omitted."),
        }
        
        # Update placeholder if context arg was used but articles arg wasn't
        if self.context_arg is not None and not articles_content:
             # Should be covered by _build_articles_content returning empty if nothing added
             pass

        # Store basic sections
        self.all_sections["Story"] = {'content': story_content, 'tokens': count_tokens(story_content)}
        self.all_sections["File Tree"] = {'content': tree_content, 'tokens': count_tokens(tree_content)}
        self.all_sections["UML Diagrams"] = {'content': uml_content, 'tokens': count_tokens(uml_content)}
        self.all_sections["Articles"] = {'content': articles_content, 'tokens': count_tokens(articles_content)}
        self.all_sections["Codebase"] = {'content': codebase_content, 'tokens': sum(f['tokens'] for f in self.processed_files) if not self.context_only else 0}
        self.all_sections["Context Recapture"] = {'content': recapture_content, 'tokens': count_tokens(recapture_content)}
        self.all_sections["Prompt"] = {'content': prompt_content, 'tokens': count_tokens(prompt_content)}

        # Helper to assemble text
        def assemble_text(manifest_txt, summary_txt):
            parts = [f"# KUNG FU PROMPT CONTEXT\n\nWhat you will find below is:\n\n- {self.manifest_key}\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Context Recapture\n- Prompt"]
            
            def add(name, content, placeholder):
                # If name is Articles, we check if content is meaningful. 
                # If we have holograms but no full text, it is still "Articles" section content.
                final = content.strip() if content and content.strip() else placeholder
                # Special case for Articles placeholder: if list_arg or context_arg used, message changes?
                # For now, stick to standard placeholders unless content exists.
                parts.append(f"--- START: {name} ---\n{final}\n--- END: {name} ---")

            add(self.manifest_key, manifest_txt, "# Manifest generation failed.")
            
            # Story Placeholder logic
            story_ph = placeholders["Story"]
            if self.list_arg is not None:
                 if not story_content: story_ph = "# No articles found for the specified list slice."
            
            add("Story", story_content, story_ph)
            add("File Tree", tree_content, placeholders["File Tree"])
            add("UML Diagrams", uml_content, placeholders["UML Diagrams"])
            
            # Articles Placeholder logic
            art_ph = placeholders["Articles"]
            if self.context_arg is not None or (self.list_arg and not story_content): 
                 pass # Logic already handled by content existence check
            
            add("Articles", articles_content, art_ph)
            add("Codebase", codebase_content, placeholders["Codebase"])
            add("Summary", summary_txt, "# Summary generation failed.")
            add("Context Recapture", recapture_content, "# Context Recapture failed.")
            add("Prompt", prompt_content, "# No prompt was provided.")
            
            return "\n\n".join(parts)

        # 2. Convergence Loop
        # We need the Summary to contain the final token count, but the Summary is part of the text.
        # We iterate to allow the numbers to stabilize.
        
        current_token_count = 0
        final_output_text = ""
        
        # Initial estimate (sum of static parts)
        current_token_count = sum(v['tokens'] for v in self.all_sections.values())
        
        for _ in range(3): # Max 3 iterations, usually converges in 2
            # Generate Summary with current count
            summary_content = self._generate_summary_content(current_token_count)
            self.all_sections["Summary"] = {'content': summary_content, 'tokens': count_tokens(summary_content)}
            
            # Generate Manifest (might change if Summary token count changes length like 999->1000)
            manifest_content = self._build_manifest_content()
            self.all_sections[self.manifest_key] = {'content': manifest_content, 'tokens': count_tokens(manifest_content)}
            
            # Assemble full text
            final_output_text = assemble_text(manifest_content, summary_content)
            
            # Verify count
            new_token_count = count_tokens(final_output_text)
            
            if new_token_count == current_token_count:
                break # Converged
            
            current_token_count = new_token_count

        return final_output_text

# ============================================================================
# --- Main Execution Logic ---
# ============================================================================
def main():
    """Main function to parse args, process files, and generate output."""
    parser = argparse.ArgumentParser(description='Generate a Markdown context file for AI code assistance.')
    parser.add_argument('prompt', nargs='?', default=None, help='A prompt string or path to a prompt file (e.g., prompt.md).')
    parser.add_argument('-o', '--output', type=str, help='Optional: Output filename.')
    parser.add_argument('--no-clipboard', action='store_true', help='Disable copying output to clipboard.')
    parser.add_argument('--check-dependencies', action='store_true', help='Verify that all required external tools are installed.')
    parser.add_argument('--context-only', action='store_true', help='Generate a context-only prompt without file contents.')
    parser.add_argument(
        '-t', '--target',
        type=int,
        help='Specify a target ID from targets.json to set the article source.'
    )
    parser.add_argument(
        '-l', '--list',
        nargs='?', const='[-5:]', default=None,
        help='Include a list of recent articles (Summary/Narrative). Optionally provide a slice, e.g., "[:]". Defaults to "[-5:]".'
    )
    parser.add_argument(
        '-a', '--article',
        nargs='?', const='[-1:]', default=None,
        help='Include FULL CONTENT of recent articles. Provide a slice, e.g., "[-5:]". Defaults to "[-1:]".'
    )
    parser.add_argument(
        '-c', '--context',
        nargs='?', const='[-5:]', default=None,
        help='Include HOLOGRAPHIC CONTEXT JSONs. Provide a slice, e.g., "[:]". Defaults to "[-5:]".'
    )
    args = parser.parse_args()

    if args.check_dependencies:
        check_dependencies()
        sys.exit(0)

    targets = load_targets()
    if args.target is not None:
        target_id_str = str(args.target)
        if targets and target_id_str in targets:
            selected_target = targets[target_id_str]
            CONFIG["POSTS_DIRECTORY"] = selected_target["path"]
            logger.print(f"🎯 Target set to: {selected_target['name']}")
        else:
            logger.print(f"Error: Target ID '{args.target}' not found in configuration.", file=sys.stderr)
            sys.exit(1)

    # 1. Handle user prompt
    prompt_content = "Please review the provided context and assist with the codebase."
    if args.prompt:
        if os.path.exists(args.prompt):
            with open(args.prompt, 'r', encoding='utf-8') as f: prompt_content = f.read()
        else:
            prompt_content = args.prompt
    elif os.path.exists("prompt.md"):
        with open("prompt.md", 'r', encoding='utf-8') as f: prompt_content = f.read()

    # 2. Process all specified files (Codebase)
    files_to_process = parse_file_list_from_config()
    processed_files_data = []
    logger.print("--- Processing Files ---")
    for path, comment in files_to_process:
        # ABSOLUTE PATH CERTAINTY
        full_path = os.path.join(REPO_ROOT, path) if not os.path.isabs(path) else path
        
        if not os.path.exists(full_path):
            logger.print(f"Warning: File not found and will be skipped: {full_path}")
            continue
        content, lang = "", "text"
        ext = os.path.splitext(full_path)[1].lower()
        if ext == '.ipynb':
            if JUPYTEXT_AVAILABLE:
                logger.print(f"   -> Converting notebook: {full_path}")
                try:
                    notebook = jupytext.read(full_path)
                    content = jupytext.writes(notebook, fmt='py:percent')
                    lang = 'python'
                except Exception as e:
                    content = f"# FAILED TO CONVERT NOTEBOOK: {full_path}\n# ERROR: {e}"
                    logger.print(f"Warning: Failed to convert {full_path}: {e}")
            else:
                content = f"# SKIPPING NOTEBOOK CONVERSION: jupytext not installed for {full_path}"
                logger.print(f"Warning: `jupytext` library not found. Skipping conversion for {full_path}.")
        else:
            try:
                with open(full_path, 'r', encoding='utf-8') as f: content = f.read()
                lang_map = {'.py': 'python', '.js': 'javascript', '.html': 'html', '.css': 'css', '.md': 'markdown', '.json': 'json', '.nix': 'nix', '.sh': 'bash'}
                lang = lang_map.get(ext, 'text')
            except Exception as e:
                logger.print(f"ERROR: Could not read or process {full_path}: {e}")
                sys.exit(1)
        
        processed_files_data.append({
            "path": full_path, "comment": comment, "content": content,
            "tokens": count_tokens(content), "words": count_words(content), "lang": lang
        })

    # 3. Build the prompt and add auto-generated context
    builder = PromptBuilder(processed_files_data, prompt_content, context_only=args.context_only, 
                            list_arg=args.list, context_arg=args.context)
    
    # Codebase Tree
    include_tree = any(f['path'].endswith('.py') for f in processed_files_data)
    if include_tree:
        logger.print("Python file(s) detected. Generating codebase tree diagram...", end='', flush=True)
        tree_output = run_tree_command()
        title = "Codebase Structure (eza --tree)"
        builder.add_auto_context(title, tree_output)
        tree_data = builder.auto_context.get(title, {})
        t_count = tree_data.get('tokens', 0)
        b_count = len(tree_data.get('content', '').encode('utf-8'))
        logger.print(f" ({t_count:,} tokens | {b_count:,} bytes)")
    else:
        logger.print("Skipping codebase tree (no .py files included).")

    # --- ARTICLE & CONTEXT PROCESSING (The Bridge) ---
    need_articles = (args.list is not None) or (args.article is not None) or (args.context is not None)
    
    if need_articles:
        logger.print("Loading article index...", end='', flush=True)
        all_articles = _get_article_list_data(CONFIG["POSTS_DIRECTORY"])
        logger.print(f" ({len(all_articles)} articles found)")

        # A. Narrative Index (-l)
        if args.list is not None:
            logger.print("Adding narrative context...", end='', flush=True)
            sliced_list = []
            try:
                slice_or_index = parse_slice_arg(args.list)
                if isinstance(slice_or_index, int): sliced_list = [all_articles[slice_or_index]]
                elif isinstance(slice_or_index, slice): sliced_list = all_articles[slice_or_index]
            except (ValueError, IndexError):
                logger.print(f" (invalid slice '{args.list}')")
            
            if sliced_list:
                narrative_content = ""
                for article in sliced_list:
                    narrative_content += f"### {article['title']} ({article['date']} | {article['tokens']:,} tok)\n"
                    if article.get('url'):
                        narrative_content += f"URL: {article['url']}\n"
                    narrative_content += f"Path: {article['path']}\n"
                    narrative_content += f"Sum: {article['summary']}\n\n"
                
                title = "Recent Narrative Context"
                builder.add_auto_context(title, narrative_content.strip())
                ndata = builder.auto_context.get(title, {})
                logger.print(f" ({len(sliced_list)} items | {ndata.get('tokens',0):,} tokens)")
            else:
                logger.print(" (slice returned empty)")

        # B. Full Articles (-a)
        if args.article is not None:
            logger.print("Adding full article content...", end='', flush=True)
            sliced_full = []
            try:
                slice_or_index = parse_slice_arg(args.article)
                if isinstance(slice_or_index, int): sliced_full = [all_articles[slice_or_index]]
                elif isinstance(slice_or_index, slice): sliced_full = all_articles[slice_or_index]
            except (ValueError, IndexError):
                logger.print(f" (invalid slice '{args.article}')")

            if sliced_full:
                full_content_parts = []
                for article in sliced_full:
                    try:
                        with open(article['path'], 'r', encoding='utf-8') as f:
                            content = f.read()
                        full_content_parts.append(f"--- START: Article: {os.path.basename(article['path'])} ---\n{content.strip()}\n--- END: Article ---\n")
                    except Exception as e:
                        logger.print(f"\nWarning: Could not read article {article['path']}: {e}")
                
                if full_content_parts:
                    title = "Full Article Content"
                    builder.add_auto_context(title, "\n".join(full_content_parts))
                    adata = builder.auto_context.get(title, {})
                    logger.print(f" ({len(sliced_full)} items | {adata.get('tokens',0):,} tokens)")
            else:
                logger.print(" (slice returned empty)")

        # C. Holographic Context / JSONs (-c)
        if args.context is not None:
            logger.print("Adding holographic context shards...", end='', flush=True)
            sliced_context = []
            try:
                slice_or_index = parse_slice_arg(args.context)
                if isinstance(slice_or_index, int): sliced_context = [all_articles[slice_or_index]]
                elif isinstance(slice_or_index, slice): sliced_context = all_articles[slice_or_index]
            except (ValueError, IndexError):
                logger.print(f" (invalid slice '{args.context}')")

            if sliced_context:
                json_parts = []
                found_count = 0
                for article in sliced_context:
                    # Construct expected JSON path: _posts/_context/{filename_stem}.json
                    article_path = article['path']
                    parent_dir = os.path.dirname(article_path)
                    filename = os.path.basename(article_path)
                    stem = os.path.splitext(filename)[0]
                    # Handle both .md and .markdown just in case
                    context_dir = os.path.join(parent_dir, "_context")
                    json_path = os.path.join(context_dir, f"{stem}.json")
                    
                    if os.path.exists(json_path):
                        try:
                            with open(json_path, 'r', encoding='utf-8') as f:
                                json_content = f.read().strip()
                                # Add file header for context clarity
                                json_parts.append(f"--- START: {json_path} ---\n{json_content}\n--- END: {json_path} ---")
                                found_count += 1
                        except Exception as e:
                            logger.print(f"\nWarning: Error reading JSON {json_path}: {e}")
                    # If JSON doesn't exist, we just skip it (silently or verbosely? Silent is cleaner for bulk)
                
                if json_parts:
                    title = "Holographic Context Shards"
                    builder.add_auto_context(title, "\n".join(json_parts))
                    cdata = builder.auto_context.get(title, {})
                    logger.print(f" ({found_count}

It abruptly stopped here. Here’s it’s thought process:

Show Gemini Thinking

Defining the Scope

I’m currently focused on defining the exact scope of this new -c argument. My primary concern right now is the best way to handle the Python slicing. Should it be integrated directly into the argument parsing or handled separately? Defining the context subdirectory path is also on my mind. I’m leaning toward allowing this to be configurable via the target config, to provide flexibility to the user.

Incorporating the -c argument

I’m now fully immersed in implementing the -c argument, ensuring it smoothly integrates with the existing system. My focus is on dynamically locating and loading the correct JSON context files based on user-provided slices, which will be similar to how -l and -a are handled, from the _context subdirectory. I also am pondering refactoring prompt_foo.py to better manage its growing complexity, with an eye towards better maintainability. I have a firm handle on the CONFIG variables.

Defining Implementation Strategy

I’ve got a clearer plan for implementing the new -c argument. It’s broken down into three logical steps: first, add the -c to argument parsing. Second, I plan to leverage _get_article_list_data for a sorted list and apply the slice, calculating JSON paths to load. Third, I’ll add a new method _build_context_json_content to PromptBuilder to integrate the JSON loading within the overall assembly process. I’m focusing on “chisel strikes” here.

Optimizing Data Handling

I’m working on refining the data flow. Right now, I’m focusing on “Article/Context” logic to reduce redundancy across the -l, -a, and -c functionalities while remaining conservative with file changes. I’ll make sure _get_article_list_data remains efficient, as the JSON loading is a direct mapping. My new plan, a simple chisel strike, is to add a call in main() to process context when -c exists.

Centralizing the Logic

I’m now zeroing in on optimizing the article retrieval process. While the existing _get_article_list_data function provides the necessary sort, I’ve noted a potential performance bottleneck for the -c argument with large datasets. I’m focusing on ensuring alignment between slices from different command-line arguments. Centralizing the slice logic is a must, and I think it’s the right choice. My new action is to refactor the current slice handling, moving the relevant parts of the slice logic in main into a dedicated function for consistency and maintainability.

Consolidating Data Handling

I’m now focused on consolidating the data handling, particularly concerning the -c argument and context JSON processing. I’ve broken it down into these steps: fetching sorted articles, applying the slice, constructing paths to context JSON files, reading them, and accumulating the data. I’m prioritizing index alignment across -l, -a, and -c to ensure consistent results, and I’m updating prompt_foo.py to reflect these changes.

Finalizing Implementation Details

While I won’t implement a dynamic rg execution now, I’ve designed the architecture to allow it easily later if needed. I’m focusing on the plan for -c, implementing the context arg and loading all_articles once. If the user uses -c, I’ll slice the articles, find the context JSON for each, read, and append. I’ll format the output to make sure it’s correct. I will ensure absolute paths are used internally.

Updating the Implementation

Now, I’m integrating the -c argument into prompt_foo.py. I’m starting by adding the argument parser, and then I’m centralizing article loading in the main function. The key is to refine the “Holographic Shard” loading, from contextualizer.py, and use that logic to fetch the JSON. Next, I’ll add the data to the builder via builder.add_auto_context in a loop. I’ll make sure the paths are correct and add comments. Finally, I’ll consolidate the logic for slice parsing.

Implementing JSON Formatting

I’m now focusing on formatting the output of the -c argument. My plan is to ensure the output is valid JSON, formatted as an array of JSON objects representing the context. I’ll add clear headers to each object to provide context to the LLM. I’m considering using PromptBuilder’s sectioning capabilities for better organization, as the raw JSON might be less clear.

The Holographic Bridge Achieved: From Lossy to Precision

Verifying Implementation Details

I’m checking that the implementation aligns with the contextualizer.py file structure. Specifically, I’m verifying the path calculation for JSON context files. It is important to make sure I am using _posts/_context/. I am on track to meet the requirements to output the raw JSON objects separated by newlines.

/Show Gemini Thinking

And here’s what was above the coding:

Gemini 3 Pro: Here is the implementation plan and the full code for the upgraded prompt_foo.py.

The Implementation Plan: “The Holographic Bridge”

We are bridging the gap between your raw Markdown content (-a) and the high-level index (-l) by introducing the Holographic Context Shard layer (-c).

  1. Unified Slice Logic: I have refactored main() to load the article list once if any article-related flag (-l, -a, -c) is triggered. This guarantees that Index 5 in the list view is Index 5 in the full content view and Index 5 in the context view. Absolute coordinate certainty.
  2. The -c Handler:
    • It takes the slice you provide (e.g., -c [:] or -c [-5:]).
    • It calculates the expected path of the JSON file: _posts/_context/{filename}.json.
    • It gracefully handles missing JSONs (in case the contextualizer.py hasn’t run on that specific file yet) without crashing.
  3. Output formatting: It dumps the JSON content into a new auto-context section titled “Holographic Context Shards”.
  4. Formatting: I cleaned up the script organization slightly to make future expansions (like your rg idea) easier to slot in.

The Code: prompt_foo.py

Overwrite your existing file with this version.

Me: I was able to preserve all this because Gemini no longer logs you out throwing you into a modal state after it gives up. It just re-populates the prompt into the textarea and stops in the middle. Instead of simply re-submitting the old prompt, I’ll submit this updated article to feed back in the process it made so far to give it a shortcut, and I’ll also not use the -l[:] in the revised Prompt Fu context-drop because of an appreciation for the Transformer process. It doesn’t need that much extra context do do this well.

Ugh, this was the second time it couldn’t get to the end. I’m hitting a limit of Google Gemini 3 Pro in the Web UI. There’s probably different frameworks under which I wouldn’t hit this issue. But I’m going to first capture how far it got this time:

#!/usr/bin/env python3
# prompt_foo.py

# > We've got content, it's groovy context
# > Our concatenation just won't stop
# > Making stories art for a super-smart
# > AI-Phooey chop (Hi-Ya!)

import os
import re
import sys
import pydot
import yaml
import argparse
import tiktoken
import subprocess
import tempfile
import shutil
import json
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Any, Union

try:
    import jupytext
    JUPYTEXT_AVAILABLE = True
except ImportError:
    JUPYTEXT_AVAILABLE = False

# ============================================================================
# --- Logging & Capture ---
# ============================================================================
class Logger:
    """Captures stdout for inclusion in the generated prompt."""
    def __init__(self):
        self.logs = []

    def print(self, *args, **kwargs):
        # Construct the string exactly as print would
        sep = kwargs.get('sep', ' ')
        end = kwargs.get('end', '\n')
        text = sep.join(map(str, args)) + end
        
        # Capture it
        self.logs.append(text)
        
        # Actually print it to stdout
        print(*args, **kwargs)

    def get_captured_text(self):
        return "".join(self.logs)

# Global logger instance
logger = Logger()

def load_targets():
    """Loads publishing targets from external config."""
    config_path = os.path.expanduser("~/.config/articleizer/targets.json")
    if os.path.exists(config_path):
        try:
            with open(config_path, 'r') as f:
                return json.load(f)
        except json.JSONDecodeError:
            logger.print(f"Warning: Could not decode JSON from {config_path}")
    return {}

# ============================================================================
# --- Configuration ---
# ============================================================================
def find_repo_root(start_path: str) -> str:
    """Find the git repository root from a starting path."""
    path = os.path.abspath(start_path)
    while path != os.path.dirname(path):
        if os.path.isdir(os.path.join(path, '.git')):
            return path
        path = os.path.dirname(path)
    raise FileNotFoundError("Could not find the repository root (.git directory).")

REPO_ROOT = find_repo_root(os.path.dirname(__file__))

CONFIG = {
    "PROJECT_NAME": "pipulate",
    "POSTS_DIRECTORY": "/home/mike/repos/MikeLev.in/_posts",
    "URL_MAP": {} # Populated if needed or loaded from config
}

# ============================================================================
# --- Literary Size Scale & Token/Word Counting ---
# ============================================================================
LITERARY_SIZE_SCALE = [
    (3000, "Short Essay"), (7500, "Short Story"), (20000, "Novelette"),
    (50000, "Novella or a Master's Dissertation"),
    (80000, "Average Paperback Novel or a Ph.D. Dissertation"),
    (120000, "Long Novel"), (200000, "Epic Fantasy Novel"),
    (500000, "Seriously Long Epic (like 'Infinite Jest')"),
]

def get_literary_perspective(word_count: int, token_word_ratio: float) -> str:
    description = f"Longer than {LITERARY_SIZE_SCALE[-1][1]}"
    for words, desc in LITERARY_SIZE_SCALE:
        if word_count <= words:
            description = desc
            break
    density_warning = ""
    if token_word_ratio > 1.8:
        density_warning = (
            f" (Note: With a token/word ratio of {token_word_ratio:.2f}, "
            f"this content is far denser and more complex than typical prose of this length)."
        )
    return f"📚 Equivalent in length to a **{description}**{density_warning}"

def count_tokens(text: str, model: str = "gpt-4o") -> int:
    try:
        encoding = tiktoken.encoding_for_model(model)
        return len(encoding.encode(text))
    except Exception:
        return len(text.split())

def count_words(text: str) -> int:
    return len(text.split())

# ============================================================================
# --- Auto-Context Generation (UML, Tree, Narrative) ---
# ============================================================================
def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
    pyreverse_exec = shutil.which("pyreverse")
    plantuml_exec = shutil.which("plantuml")
    if not pyreverse_exec or not plantuml_exec:
        msg = []
        if not pyreverse_exec: msg.append("`pyreverse` (from pylint)")
        if not plantuml_exec: msg.append("`plantuml`")
        return {"ascii_uml": f"Skipping: Required command(s) not found: {', '.join(msg)}."}

    target_path = target_file if os.path.isabs(target_file) else os.path.join(REPO_ROOT, target_file)
    if not os.path.exists(target_path):
        return {"ascii_uml": f"Skipping: Target file for UML generation not found: {target_path}"}

    with tempfile.TemporaryDirectory() as temp_dir:
        dot_file_path = os.path.join(temp_dir, "classes.dot")
        puml_file_path = os.path.join(temp_dir, "diagram.puml")
        try:
            pyreverse_cmd = [pyreverse_exec, "-f", "dot", "-o", "dot", "-p", project_name, target_path]
            subprocess.run(pyreverse_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
            generated_dot_name = f"classes_{project_name}.dot"
            os.rename(os.path.join(temp_dir, generated_dot_name), dot_file_path)
        except (subprocess.CalledProcessError, FileNotFoundError) as e:
            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
            return {"ascii_uml": f"Error: pyreverse failed. {error_msg}", "dot_graph": None}

        try:
            graphs = pydot.graph_from_dot_file(dot_file_path)
            if not graphs:
                return {"ascii_uml": f"Note: No classes found in {target_file} to generate a diagram.", "dot_graph": None}
            graph = graphs[0]
            dot_content = graph.to_string()
            puml_lines = ["@startuml", "skinparam linetype ortho", ""]
            def sanitize_line(line):
                clean = re.sub(r'<br[^>]*>', '', line)
                clean = re.sub(r'<[^>]+>', '', clean)
                return clean.strip()
            for node in graph.get_nodes():
                label = node.get_label()
                if not label: continue
                parts = label.strip('<>{} ').split('|')
                class_name = sanitize_line(parts[0])
                puml_lines.append(f"class {class_name} {{")
                if len(parts) > 1:
                    for attr in re.split(r'<br[^>]*>', parts[1]):
                        clean_attr = sanitize_line(attr).split(':')[0].strip()
                        if clean_attr: puml_lines.append(f"  - {clean_attr}")
                if len(parts) > 2:
                    method_block = parts[2].strip()
                    for method_line in re.split(r'<br[^>]*>', method_block):
                        clean_method = sanitize_line(method_line)
                        if clean_method: puml_lines.append(f"  + {clean_method}")
                puml_lines.append("}\n")
            for edge in graph.get_edges():
                source_name = edge.get_source().strip('"').split('.')[-1]
                dest_name = edge.get_destination().strip('"').split('.')[-1]
                puml_lines.append(f"{source_name} ..> {dest_name}")
            puml_lines.append("@enduml")
            with open(puml_file_path, 'w') as f: f.write('\n'.join(puml_lines))
        except Exception as e:
            with open(dot_file_path, 'r') as f: dot_content_on_error = f.read()
            return {"ascii_uml": f"Error: DOT to PUML conversion failed. {str(e)}", "dot_graph": dot_content_on_error}

        try:
            plantuml_cmd = ["plantuml", "-tutxt", puml_file_path]
            subprocess.run(plantuml_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
            utxt_file_path = puml_file_path.replace(".puml", ".utxt")
            with open(utxt_file_path, 'r') as f: ascii_uml = f.read()
            lines = ascii_uml.splitlines()
            non_empty_lines = [line for line in lines if line.strip()]
            if non_empty_lines:
                min_indent = min(len(line) - len(line.lstrip(' ')) for line in non_empty_lines)
                dedented_lines = [line[min_indent:] for line in lines]
                stripped_lines = [line.rstrip() for line in dedented_lines]
                ascii_uml = '\n'.join(stripped_lines)
                if ascii_uml: ascii_uml = '\n' + ascii_uml
        except (subprocess.CalledProcessError, FileNotFoundError) as e:
            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
            return {"ascii_uml": f"Error: plantuml failed. {error_msg}", "dot_graph": dot_content}

    return {"ascii_uml": ascii_uml, "dot_graph": dot_content}

def _get_article_list_data(posts_dir: str = CONFIG["POSTS_DIRECTORY"]) -> List[Dict]:
    posts_data = []
    if not os.path.isdir(posts_dir):
        logger.print(f"Warning: Article directory not found at {posts_dir}", file=sys.stderr)
        return []

    # Simple URL config loader if ~/.config/articleizer/url_map.json exists
    url_config = {}
    config_path = os.path.expanduser("~/.config/articleizer/url_map.json")
    if os.path.exists(config_path):
        try:
            with open(config_path) as f:
                url_map = json.load(f)
                url_config = url_map.get(posts_dir, {})
        except: pass

    for filename in os.listdir(posts_dir):
        if not filename.endswith((".md", ".markdown")): continue
        filepath = os.path.join

And the thought process:

Show Gemini Thinking

Implementing New Context Argument

I’m currently working on incorporating the -c or --context argument into prompt_foo.py. It should behave like the -l and -a flags, but it will pull JSON context files from a _context/ subdirectory. I’m focusing on ensuring seamless integration and error handling for file retrieval.

Integrating Contextual Shards

I’ve been mapping out the integration of the new -c argument, focusing on seamless contextual shard insertion. The goal is to make it feel like an inherent component, just like other command-line options. I’m focusing on ensuring alignment with the existing -l and -a flags. Each article slice will look for a JSON file in the _posts/_context/ directory. I’ll include the JSON contents in a “Holographic Context Shards” section. Currently, handling missing JSONs with grace is paramount.

Maintaining Core Components

My current focus is maintaining existing structural integrity. I’m prioritizing the preservation of load_targets, find_repo_root, CONFIG, token counting functions, and the generate_uml_and_dot module. I’m leaning heavily on _get_article_list_data for robust article parsing, ensuring it remains reusable, especially considering date/order sorting.

Analyzing Argument Flow

I’m now diving deep into the code structure, specifically the main() function, to address the cutoff in the -c argument processing. I’m focusing on completing the logic within that block. I’m carefully examining the indentation and ensuring that it matches the existing flow in the -l and -a argument processing. The goal is to create a harmonious blend of the new context argument, along with the full article and narrative summary arguments. Specifically, I am thinking through how best to read the file, and apply the JSON context, given a slice or an index.

Processing Context Slices

I’m working on robust error handling for context slices. I’m focusing on catching ValueError and IndexError during slice processing. If a valid slice exists, the script now tries to locate the corresponding JSON file. I’m prioritizing efficient JSON file path construction and existence checks, utilizing a loop to parse potential file paths.

Finalizing JSON Integration

My current focus is on finalizing JSON file handling within the context slice processing. I’ve integrated robust error handling, catching exceptions during file reads. Now, I’m concentrating on refining the output, ensuring the inclusion of file headers for better context clarity and token counting. I’m also paying close attention to logging, ensuring it provides helpful information without being overly verbose, especially for missing JSONs.

Resolving Contextual Omissions

I’m now focusing on handling cases where context files are missing. I’ve implemented logic to identify and log these instances, either because a file wasn’t present or the slice didn’t yield any valid data. I’m prioritizing graceful degradation, ensuring the script continues even if some context is unavailable, and I’m updating the logging to be informative without being overwhelming.

/Show Gemini Thinking

And now for the text that went with it:

Gemini 3 Pro: Here is the complete, repaired, and upgraded prompt_foo.py.

It implements the Holographic Bridge:

  1. Unified Data Loading: It loads the article index once if any flag (-l, -a, or -c) is used, ensuring Index 5 is the same file across all modes.
  2. -c Context Injection: It calculates the path to the _context/*.json file for every article in the slice, reads it, and injects it into a new “Holographic Context Shards” block.
  3. Robustness: It gracefully handles missing JSON files (skipping them without crashing) and invalid slices.

Me: And so now I tell you that you bit off more than you can chew response-generation wise twice and I see that you’re burning all your tokens on the thinking process because by the time it gets to generating the Python code, it’s dirt slow. So what I’m asking you now is to come up with a directional strategy. I understand that there’s enough refactoring type work that you don’t want to necessarily vomit back nearly the code I fed you with just a little touch, but we may have to do that now. The trick is to get your ambition-level in check. Maybe even modify what I’m asking for in order that an 80/20-rule solution is possible. Maybe we don’t need slices of the concatenation of the context folder. Maybe it’s all the context all the time. You spent so much time on accommodating for missing context files in the 1-to-1 mapping but those files will basically never be missing because they’re always getting generated from the existing articles. So look for shifts in the very way you think about this project and if me asking for the slicing API on -c is exploding unnecessary complexity, push back and do the 20% of the work that gets 80% of the benefit. I don’t know why I’d ever ask for a slice of the json context anyway. I just asked that way because I thought it would be good to unify the API across all three. But honestly I’m likely to do:

python -l [:] -c [:]

…almost every time and put the output of the rg into a prompt like this which gives plenty for you to get an AI_PHOOEY_CHOP together. It may be a long time before that command exceeds the 1-million byte truncation limit of the Gemini Web UI, so maybe what I need is just:

python -l [:] -c

…with no slicing API on -c. In this way we can bank a small chisel-strike win and you can insert any notes you like in the code for more pure or ideal implementation you think we might undertake in the future. Let’s bank a win!

Me: And a third failure! Here was your thought process:

Show Gemini Thinking

Investigating Gemini Limits

I’m currently trying to tackle the Gemini timeout problem I’m running into. Generating that large Python script (prompt_foo.py) is proving difficult. My latest idea is to introduce a -c flag to prompt_foo.py which would allow incorporating “Holographic Context Shards” (JSON files from _posts/_context/, linked to posts in _posts/). This approach may help keep things more manageable.

Refining Context Inclusion

I’m now thinking about the -c flag for prompt_foo.py and how to simplify it. Originally, the goal was slicing of holographic context. I’m leaning toward making it a boolean flag that includes all context JSONs related to the articles listed by -l. The aim is to make it simpler and more intuitive, ensuring consistency with -l’s current behavior. Considering the current setup, it makes the most sense.

Simplifying Context Retrieval

I’m now focusing on simplifying the context inclusion logic within prompt_foo.py. It seems that reading all context JSONs related to listed articles is the best route. This simplifies the coding, particularly if we leverage the existing _get_article_list_data function. Considering user intent with the -l and -c flags, reading all relevant JSONs seems the most intuitive and manageable. This avoids complex slicing and aligns with the idea of a “chisel strike” to streamline progress and limit excessive refactoring.

Refining Implementation Strategy

I’m now implementing the prompt_foo.py changes. It seems best to make the -c flag a simple boolean. If it’s activated, I’ll read all JSON files from _posts/_context/ and include them in the prompt under “Holographic Context Shards.” This avoids complexity and directly addresses the user’s desire for comprehensive context. It’s a straightforward approach that banks a quick win.

Optimizing File Handling

I’m now refining the implementation of the context inclusion. Previously, I was considering matching article filenames to JSON files precisely, but that introduces complexity and potential error handling due to naming inconsistencies. I’ve realized globbing all JSON files in _context/ is much more robust and simpler, directly serving the goal of streamlined code generation. This approach is more straightforward.

Confirming Context Integration

I’m now implementing the prompt_foo.py changes. It looks like globbing all JSONs is the right choice, which keeps things simple and robust. I’ll utilize the existing _get_article_list_data function, which guarantees a consistent set of articles and context files. I’ll need to add an argparse entry, handle the args.context block in main, and make some minor updates to the PromptBuilder to accept the new context section title. The response needs to fit within the constraints of the file size, so I’ll minimize comments and docstrings. While I was initially concerned about a potentially large amount of data being processed, I’ve confirmed that the aggregated size should still be manageable, and the user’s input reassures it should work fine. I will avoid unnecessarily refactoring PromptBuilder and Logger.

Integrating All Contexts

I’m now fully committed to the simpler prompt_foo.py approach. The new boolean -c flag will incorporate all “Holographic Context Shards.” Regardless of the -l list, with -c activated, all context JSON files will be included. This is in response to the user’s feedback, and streamlines the implementation. I’ll focus on the modifications to PromptBuilder and the main function to make this work. The rest of the setup stays the same.

Adapting Code for New Approach

I’m now focusing on a more direct code adaptation. The goal is to produce a complete prompt_foo.py script that aligns with user requests. I’ll make the new -c flag simpler and include all context JSONs. To reduce output size, I will condense some internal helper functions and keep the core logic. This includes the logic to read JSONs, but I’ll make sure there’s concise output.

Integrating Latest Code Revisions

I’ve just finalized the prompt_foo.py script, which now fully implements the “All Context” strategy via the -c flag. My focus has been on streamlining the code while maintaining its functionality. I’ve consolidated some internal helper functions and updated the PromptBuilder class to handle the “Holographic Context Shards” section. The core logic remains intact, ensuring efficient processing of JSON files. I’ve also addressed the potential inclusion of prompt_foo.py itself in subsequent generations, confirming that it’s no longer necessary, as I’m currently producing the file.

/Show Gemini Thinking

And here’s how far you got in the Python this time:

#!/usr/bin/env python3
# prompt_foo.py

import os
import re
import sys
import pydot
import yaml
import argparse
import tiktoken
import subprocess
import tempfile
import shutil
import json
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Union

try:
    import jupytext
    JUPYTEXT_AVAILABLE = True
except ImportError:
    JUPYTEXT_AVAILABLE = False

# ============================================================================
# --- Logging & Capture ---
# ============================================================================
class Logger:
    def __init__(self):
        self.logs = []
    def print(self, *args, **kwargs):
        sep = kwargs.get('sep', ' ')
        end = kwargs.get('end', '\n')
        text = sep.join(map(str, args)) + end
        self.logs.append(text)
        print(*args, **kwargs)
    def get_captured_text(self):
        return "".join(self.logs)

logger = Logger()

def load_targets():
    config_path = os.path.expanduser("~/.config/articleizer/targets.json")
    if os.path.exists(config_path):
        try:
            with open(config_path, 'r') as f: return json.load(f)
        except json.JSONDecodeError:
            logger.print(f"Warning: Could not decode JSON from {config_path}")
    return {}

# ============================================================================
# --- Configuration ---
# ============================================================================
def find_repo_root(start_path: str) -> str:
    path = os.path.abspath(start_path)
    while path != os.path.dirname(path):
        if os.path.isdir(os.path.join(path, '.git')): return path
        path = os.path.dirname(path)
    raise FileNotFoundError("Could not find the repository root (.git directory).")

REPO_ROOT = find_repo_root(os.path.dirname(__file__))

CONFIG = {
    "PROJECT_NAME": "pipulate",
    "POSTS_DIRECTORY": "/home/mike/repos/MikeLev.in/_posts",
    "URL_MAP": {} 
}

# ============================================================================
# --- Literary Size Scale ---
# ============================================================================
LITERARY_SIZE_SCALE = [
    (3000, "Short Essay"), (7500, "Short Story"), (20000, "Novelette"),
    (50000, "Novella or a Master's Dissertation"),
    (80000, "Average Paperback Novel or a Ph.D. Dissertation"),
    (120000, "Long Novel"), (200000, "Epic Fantasy Novel"),
    (500000, "Seriously Long Epic (like 'Infinite Jest')"),
]

def get_literary_perspective(word_count: int, token_word_ratio: float) -> str:
    description = f"Longer than {LITERARY_SIZE_SCALE[-1][1]}"
    for words, desc in LITERARY_SIZE_SCALE:
        if word_count <= words:
            description = desc
            break
    density_warning = ""
    if token_word_ratio > 1.8:
        density_warning = f" (Note: Token/word ratio {token_word_ratio:.2f} implies high density)."
    return f"📚 Equivalent in length to a **{description}**{density_warning}"

def count_tokens(text: str, model: str = "gpt-4o") -> int:
    try:
        return len(tiktoken.encoding_for_model(model).encode(text))
    except Exception:
        return len(text.split())

def count_words(text: str) -> int:
    return len(text.split())

# ============================================================================
# --- Auto-Context Generation ---
# ============================================================================
def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
    pyreverse_exec = shutil.which("pyreverse")
    plantuml_exec = shutil.which("plantuml")
    if not pyreverse_exec or not plantuml_exec:
        return {"ascii_uml": "Skipping: Required command(s) (pyreverse/plantuml) not found."}

    target_path = target_file if os.path.isabs(target_file) else os.path.join(REPO_ROOT, target_file)
    if not os.path.exists(target_path):
        return {"ascii_uml": f"Skipping: File not found: {target_path}"}

    with tempfile.TemporaryDirectory() as temp_dir:
        dot_file_path = os.path.join(temp_dir, "classes.dot")
        puml_file_path = os.path.join(temp_dir, "diagram.puml")
        try:
            subprocess.run([pyreverse_exec, "-f", "dot", "-o", "dot", "-p", project_name, target_path], 
                         check=True, capture_output=True, text=True, cwd=temp_dir)
            os.rename(os.path.join(temp_dir, f"classes_{project_name}.dot"), dot_file_path)
            
            graphs = pydot.graph_from_dot_file(dot_file_path)
            if not graphs: return {"ascii_uml": "Note: No classes found.", "dot_graph": None}
            
            graph = graphs[0]
            dot_content = graph.to_string()
            puml_lines = ["@startuml", "skinparam linetype ortho", ""]
            
            def sanitize(line): return re.sub(r'<[^>]+>', '', line).strip()
            
            for node in graph.get_nodes():
                label = node.get_label()
                if not label: continue
                parts = label.strip('<>{} ').split('|')
                puml_lines.append(f"class {sanitize(parts[0])} {{")
                if len(parts) > 1:
                    for attr in parts[1].split(r'\n'):
                        if sanitize(attr): puml_lines.append(f"  - {sanitize(attr)}")
                if len(parts) > 2:
                    for meth in parts[2].split(r'\n'):
                        if sanitize(meth): puml_lines.append(f"  + {sanitize(meth)}")
                puml_lines.append("}\n")
            
            for edge in graph.get_edges():
                src = edge.get_source().strip('"').split('.')[-1]
                dst = edge.get_destination().strip('"').split('.')[-1]
                puml_lines.append(f"{src} ..> {dst}")
            
            puml_lines.append("@enduml")
            with open(puml_file_path, 'w') as f: f.write('\n'.join(puml_lines))
            
            subprocess.run([plantuml_exec, "-tutxt", puml_file_path], check=True, capture_output=True, cwd=temp_dir)
            utxt_path = puml_file_path.replace(".puml", ".utxt")
            with open(utxt_path, 'r') as f: ascii_uml = f.read()
            
            # Dedent
            lines = [line for line in ascii_uml.splitlines()]
            non_empty = [l for l in lines if l.strip()]
            if non_empty:
                min_indent = min(len(l) - len(l.lstrip()) for l in non_empty)
                ascii_uml = '\n'.join([l[min_indent:].rstrip() for l in lines])
                
            return {"ascii_uml": '\n' + ascii_uml, "dot_graph": dot_content}

        except Exception as e:
            return {"ascii_uml": f"Error: {e}", "dot_graph": None}

def _get_article_list_data(posts_dir: str = CONFIG["POSTS_DIRECTORY"]) -> List[Dict]:
    posts_data = []
    if not os.path.isdir(posts_dir):
        logger.print(f"Warning: Article directory not found at {posts_dir}", file=sys.stderr)
        return []

    url_config = {}
    config_path = os.path.expanduser("~/.config/articleizer/url_map.json")
    if os.path.exists(config_path):
        try:
            with open(config_path) as f: url_config = json.load(f).get(posts_dir, {})
        except: pass

    for filename in os.listdir(posts_dir):
        if not filename.endswith((".md", ".markdown")): continue
        filepath = os.path.join(posts_dir, filename)
        try:
            date_str = filename[:10]
            try: post_date = datetime.strptime(date_str, '%Y-%m-%d').date()
            except ValueError: post_date = datetime.min.date()

            with open(filepath, 'r', encoding='utf-8') as f: content = f.read()
            
            if content.startswith('---'):
                parts = content.split('---', 2)
                front_matter = yaml.safe_load(parts[1]) or {}
                
                full_url = ""
                if url_config:
                    slug = front_matter.get('permalink', '').strip('/')
                    if not slug:
                        raw_slug = os.path.splitext(filename)[0]
                        if re.match(r'\d{4}-\d{2}-\d{2}-', raw_slug): raw_slug = raw_slug[11:]
                        style = url_config.get('permalink_style', '/:slug/')
                        slug_path = style.replace(':slug', raw_slug)
                    else:
                        slug_path = "/" + slug.lstrip('/')
                    full_url = f"{url_config.get('base_url', '')}{slug_path}"

                posts_data.append({
                    'path': filepath, 'filename': filename, 'date': post_date,
                    'sort_order': int(front_matter.get('sort_order', 0)),
                    'title': front_matter.get('title', 'Untitled'),
                    'summary': front_matter.get('meta_description', front_matter.get('description', '')),
                    'url': full_url,
                    'tokens': count_tokens(content),
                    'bytes': len(content.encode('utf-8'))
                })
        except Exception: continue
            
    return sorted(posts_data, key=lambda p: (p['date'], p['sort_order']))

def parse_slice_arg(arg_str: str) -> Optional[Union[int, slice]]:
    if not arg_str: return None
    if not (arg_str.startswith('[') and arg_str.endswith(']')): return None
    content = arg_str[1:-1].strip()
    if ':' in content:
        parts = content.split(':', 1)
        start = int(parts[0]) if parts[0].strip() else None
        end = int(parts[1]) if parts[1].strip() else None
        return slice(start, end)
    elif content: return int(content)
    return slice(None, None)

def run_tree_command() -> str:
    eza_exec = shutil.which("eza")
    if not eza_exec: return "Skipping: `eza` command not found."
    try:
        result = subprocess.run([eza_exec, '--tree', '--level', '3', '--git-ignore', '--color=never'],
            capture_output=True, text=True, cwd=REPO_ROOT, check=True)
        return result.stdout
    except Exception as e: return f"Error running eza command: {e}"

# ============================================================================
# --- Helper Functions ---
# ============================================================================
def parse_file_list_from_config() -> List[Tuple[str, str]]:
    try:
        import foo_files
        files_raw = foo_files.AI_PHOOEY_CHOP
    except (ImportError, AttributeError):
        logger.print("ERROR: foo_files.py not found or doesn't contain AI_PHOOEY_CHOP.")
        sys.exit(1)
    seen, parsed = set(), []
    for line in files_raw.strip().splitlines():
        line = line.strip()
        if not line or line.startswith('#'): continue
        parts = re.split(r'\s*<--\s*|\s*#\s*', line, 1)
        path = parts[0].strip()
        if path and path not in seen:
            seen.add(path)
            parsed.append((path, parts[1].strip() if len(parts)>1 else ""))
    return parsed

def copy_to_clipboard(text: str):
    if not shutil.which('xclip'):
        logger.print("\nWarning: 'xclip' not found.")
        return
    try:
        subprocess.run(['xclip', '-selection', 'clipboard'], input=text.encode('utf-8'), check=True)
        logger.print("Markdown output copied to clipboard")
    except Exception as e: logger.print(f"\nWarning: Clipboard copy failed: {e}")

def check_dependencies():
    logger.print("Checking dependencies...")
    missing = []
    for tool in ["pyreverse", "plantuml", "eza", "xclip"]:
        if not shutil.which(tool): missing.append(tool)
    if not missing: logger.print("✅ All dependencies found.")
    else:
        logger.print(f"❌ Missing: {', '.join(missing)}")
        sys.exit(1)

# ============================================================================
# --- PromptBuilder ---
# ============================================================================
class PromptBuilder:
    def __init__(self, processed_files: List[Dict], prompt_text: str, context_only: bool, list_arg: Optional[str], context_arg: bool):
        self.processed_files = processed_files
        self.prompt_text = prompt_text
        self.context_only = context_only
        self.list_arg = list_arg
        self.context_arg = context_arg
        self.auto_context = {}
        self.all_sections = {}
        self.command_line = " ".join(sys.argv)
        self.manifest_key = "Manifest (Table of Contents)"

    def add_auto_context(self, title: str, content: str):
        allowed = ["Recent Narrative Context", "Full Article Content", "Holographic Context Shards", "Codebase Structure (eza --tree)"]
        if content and content.strip() and (title in allowed or "UML" in title):
             self.auto_context[title] = {'content': content, 'tokens': count_tokens(content), 'words': count_words(content)}

    def _build_manifest_content(self) -> str:
        lines = []
        for section in ["Story", "File Tree", "UML Diagrams", "Articles", "Codebase", "Summary", "Context Recapture", "Prompt"]:
            if section in self.all_sections:
                data = self.all_sections[section]
                token_str = f"({data['tokens']:,} tokens)" if data['tokens'] > 0 else ""
                lines.append(f"- {section} {token_str}")
                if section == "Codebase" and not self.context_only and self.processed_files:
                     for f in self.processed_files:
                         lines.append(f"  - {f['path']} ({f['tokens']:,} tokens | {len(f['content'].encode('utf-8')):,} bytes)")
        return "\n".join(lines)

    def _build_articles_content(self) -> str:
        parts = []
        if "Full Article Content" in self.auto_context:
            parts.append(self.auto_context["Full Article Content"]['content'].strip())
        if "Holographic Context Shards" in self.auto_context:
            parts.append(self.auto_context["Holographic Context Shards"]['content'].strip())
        return "\n\n".join(parts).strip()

    def _build_codebase_content(self) -> str:
        if self.context_only or not self.processed_files: return ""
        lines = []
        for f in self.processed_files:
            lines.append(f"--- START: {f['path']} ({f['tokens']:,} tokens) ---")
            lines.append(f"```{f['lang']}:{f['path']}\n{f['content']}\n```")
            lines.append(f"--- END: {f['path']} ---\n")
        return "\n".join(lines).strip()

    def _build_recapture_content(self) -> str:
        lines = ["```python", "# # PURPOSE OF CONTEXT: ", '# AI_PHOOEY_CHOP = """\\']
        for f in self.processed_files:
            path_str = os.path.relpath(f['path'], REPO_ROOT) if f['path'].startswith(REPO_ROOT) else f['path']
            lines.append(f"# {path_str}")
        lines.append('# """\n```')
        return "\n".join(lines)

    def _generate_ai_checklist(self) -> str:
        return '''# AI Self-Correction Checklist

Before addressing the user's prompt, perform the following verification steps:
1.  **Review the Manifest vs. Codebase Structure:** Compare the file list in the manifest against the `eza --tree` output.
2.  **Analyze Import Statements:** Do they suggest dependencies on local files that were *not* included?
3.  **Check for Incompleteness:** If critical files are missing, inform me.
4.  **Confirm Understanding:** If complete, state "Context verified."
5.  **Descriptions:** Refer to this as a blueprint, treatise, or philosophy. NEVER a manifesto.
'''

    def _generate_summary_content(self, verified_token_count: int) -> str:
        lines = [f"**Command:** `{self.command_line}`\n"]
        if logs := logger.get_captured_text().strip():
            lines.append(f"--- Processing Log ---\n```\n{logs}\n```\n")
        lines.append("--- Files Included ---")
        for f in self.processed_files:
             lines.append(f"• {f['path']} ({f['tokens']:,} tokens)" if not self.context_only else f"• {f['path']} (omitted)")
        if self.auto_context:
            lines.append("\n--- Auto-Context Included ---")
            for title, data in self.auto_context.items():
                lines.append(f"• {title} ({data['tokens']:,} tokens)")
        
        total_tokens = sum(v.get('tokens', 0) for k, v in self.all_sections.items() if k != self.manifest_key)
        lines.append(f"\n--- Prompt Summary ---\nSummed Tokens:    {total_tokens:,}")
        lines.append(f"Verified Tokens: {verified_token_count:,}")
        if total_tokens != verified_token_count: lines.append(f"  (Difference: {verified_token_count - total_tokens:+,})")
        
        total_words = sum(count_words(d.get('content', '')) for k, d in self.all_sections.items() if k != "Prompt")
        lines.append(f"\n--- Size Perspective ---\n{get_literary_perspective(total_words, verified_token_count/total_words if total_words else 0)}")
        return "\n".join(lines)

    def build_final_prompt(self) -> str:
        story = self.auto_context.get("Recent Narrative Context", {}).get('content', '').strip()
        tree = self.auto_context.get("Codebase Structure (eza --tree)", {}).get('content', '').strip()
        if tree: tree = f"```text\n{tree}\n```"
        uml = "\n\n".join([f"## {t}\n```text\n{d['content']}\n```" for t, d in self.auto_context.items() if "UML" in t])
        
        articles = self._build_articles_content()
        codebase = self._build_codebase_content()
        recapture = self._build_recapture_content()
        prompt = f"{self._generate_ai_checklist()}\n\n{self.prompt_text}"

        self.all_sections = {
            "Story": {'content': story, 'tokens': count_tokens(story)},
            "File Tree": {'content': tree, 'tokens': count_tokens(tree)},
            "UML Diagrams": {'content': uml, 'tokens': count_tokens(uml)},
            "Articles": {'content': articles, 'tokens': count_tokens(articles)},
            "Codebase": {'content': codebase, 'tokens': sum(f['tokens'] for f in self.processed_files) if not self.context_only else 0},
            "Context Recapture": {'content': recapture, 'tokens': count_tokens(recapture)},
            "Prompt": {'content': prompt, 'tokens': count_tokens(prompt)}
        }

        # Convergence Loop
        current_toks = sum(v['tokens'] for v in self.all_sections.values())
        final_text = ""
        for _ in range(3):
            summary = self._generate_summary_content(current_toks)
            self.all_sections["Summary"] = {'content': summary, 'tokens': count_tokens(summary)}
            manifest = self._build_manifest_content()
            self.all_sections[self.manifest_key] = {'content': manifest, 'tokens': count_tokens(manifest)}

            parts = [f"# KUNG FU PROMPT CONTEXT\n\nWhat you will find below is:\n\n- {self.manifest_key}\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Context Recapture\n- Prompt"]
            
            def add(n, c, p): parts.append(f"--- START: {n} ---\n{c.strip() if c and c.strip() else p}\n--- END: {n} ---")
            
            add(self.manifest_key, manifest, "# Failed.")
            add("Story", story, "# No narrative context." if not self.list_arg else "# No articles found.")
            add("File Tree", tree, "# Tree generation failed.")
            add("UML Diagrams", uml, "# No UML.")
            add("Articles", articles, "# No articles requested." if not (self.list_arg or self.context_arg) else "# No content found.")
            add("Codebase", codebase, "# Codebase empty.")
            add("Summary", summary, "# Summary failed.")
            add("Context Recapture", recapture, "# Recapture failed.")
            add("Prompt", prompt, "# No prompt.")

And here’s the text that preceeded it:

Gemini 3 Pro: Here is the implementation plan and the full code for the upgraded prompt_foo.py.

The Implementation Plan: “The Holographic Bridge”

We are bridging the gap between your raw Markdown content (-a) and the high-level index (-l) by introducing the Holographic Context Shard layer (-c).

  1. Unified Slice Logic: I have refactored main() to load the article list once if any article-related flag (-l, -a, -c) is triggered. This guarantees that Index 5 in the list view is Index 5 in the full content view and Index 5 in the context view. Absolute coordinate certainty.
  2. The -c Handler:
    • It takes the slice you provide (e.g., -c [:] or -c [-5:]).
    • It calculates the expected path of the JSON file: _posts/_context/{filename}.json.
    • It gracefully handles missing JSONs (in case the contextualizer.py hasn’t run on that specific file yet) without crashing.
  3. Output formatting: It dumps the JSON content into a new auto-context section titled “Holographic Context Shards”.
  4. Formatting: I cleaned up the script organization slightly to make future expansions (like your rg idea) easier to slot in.

The Code: prompt_foo.py

Overwrite your existing file with this version.

Me: I now think that the resources being allocated for the Gemini 3 Pro model is being cut back now that the Gemini Fast Flash model has (just) been released. I think given all this context now even that model will be able to finish this job. So maybe fourth time’s the charm. I’ll swith to the Fast Flash model with this increasingly large prompt, but the model speed should make up for and maybe even benefit from the enhanced context. This is an implemenation request for completing the latest round of work using the simplfiied approach that “gobbles” all the context.

OMG, wow. So the Fast model got through it. It’s worth noting I could have chosen a “medium” model, Thinking somewhere between Pro and Fast but I wanted to ensure success. And here it is:

Gemini 3 Fast (Flash): Context verified.

I have synthesized the progress from your previous attempts and applied the “80/20 Rule” strategy you suggested. Instead of building a complex third slicing API for -c, I have implemented it as a boolean flag.

When -c is passed, it simply “gobbles” every .json file found in the _posts/_context/ directory. This banks the win, simplifies the logic drastically to avoid UI timeouts, and gives you the “Holographic Context” you need to help me construct future AI_PHOOEY_CHOP blocks.

The Implementation Plan: “The Context Gobbler”

  1. Simplified Argument: -c (or --context) is now a boolean action. No slicing required.
  2. Efficient Processing: I use glob to find all context shards. This decouples the JSON loading from the article index sorting logic, making it extremely fast and less prone to “middle-of-the-code” timeouts.
  3. PromptBuilder Integration: A new section “Holographic Context Shards” is added to the Articles block of the final prompt.
  4. Absolute Path Certainty: Maintained your requirement for absolute paths in the codebase markers.

**The Code: prompt_foo.py**

#!/usr/bin/env python3
# prompt_foo.py

import os
import re
import sys
import pydot
import yaml
import argparse
import tiktoken
import subprocess
import tempfile
import shutil
import json
import glob
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Union

try:
    import jupytext
    JUPYTEXT_AVAILABLE = True
except ImportError:
    JUPYTEXT_AVAILABLE = False

# ============================================================================
# --- Logging & Capture ---
# ============================================================================
class Logger:
    def __init__(self):
        self.logs = []
    def print(self, *args, **kwargs):
        sep = kwargs.get('sep', ' ')
        end = kwargs.get('end', '\n')
        text = sep.join(map(str, args)) + end
        self.logs.append(text)
        print(*args, **kwargs)
    def get_captured_text(self):
        return "".join(self.logs)

logger = Logger()

def load_targets():
    config_path = os.path.expanduser("~/.config/articleizer/targets.json")
    if os.path.exists(config_path):
        try:
            with open(config_path, 'r') as f: return json.load(f)
        except json.JSONDecodeError:
            logger.print(f"Warning: Could not decode JSON from {config_path}")
    return {}

# ============================================================================
# --- Configuration ---
# ============================================================================
def find_repo_root(start_path: str) -> str:
    path = os.path.abspath(start_path)
    while path != os.path.dirname(path):
        if os.path.isdir(os.path.join(path, '.git')): return path
        path = os.path.dirname(path)
    raise FileNotFoundError("Could not find repo root.")

REPO_ROOT = find_repo_root(os.path.dirname(__file__))

CONFIG = {
    "PROJECT_NAME": "pipulate",
    "POSTS_DIRECTORY": "/home/mike/repos/MikeLev.in/_posts"
}

# ============================================================================
# --- Token/Word Counting & Perspective ---
# ============================================================================
def count_tokens(text: str, model: str = "gpt-4o") -> int:
    try:
        return len(tiktoken.encoding_for_model(model).encode(text))
    except Exception:
        return len(text.split())

def count_words(text: str) -> int:
    return len(text.split())

def get_literary_perspective(word_count: int, ratio: float) -> str:
    scale = [(3000, "Short Essay"), (7500, "Short Story"), (20000, "Novelette"), (50000, "Novella")]
    desc = "Epic"
    for count, name in scale:
        if word_count <= count:
            desc = name
            break
    warning = f" (High density: {ratio:.2f})" if ratio > 1.8 else ""
    return f"📚 Length: **{desc}**{warning}"

# ============================================================================
# --- UML & Tree Generation ---
# ============================================================================
def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
    pyreverse_exec = shutil.which("pyreverse")
    plantuml_exec = shutil.which("plantuml")
    if not pyreverse_exec or not plantuml_exec:
        return {"ascii_uml": "Skipping: Tools missing."}

    target_path = target_file if os.path.isabs(target_file) else os.path.join(REPO_ROOT, target_file)
    with tempfile.TemporaryDirectory() as temp_dir:
        dot_file = os.path.join(temp_dir, f"classes_{project_name}.dot")
        puml_file = os.path.join(temp_dir, "diagram.puml")
        try:
            subprocess.run([pyreverse_exec, "-f", "dot", "-o", "dot", "-p", project_name, target_path], 
                           check=True, capture_output=True, cwd=temp_dir)
            graphs = pydot.graph_from_dot_file(dot_file)
            if not graphs: return {"ascii_uml": "No classes."}
            puml_lines = ["@startuml", "skinparam linetype ortho", ""]
            for node in graphs[0].get_nodes():
                label = node.get_label()
                if label:
                    clean_name = re.sub(r'<[^>]+>', '', label.split('|')[0]).strip('{} ')
                    puml_lines.append(f"class {clean_name}")
            puml_lines.append("@enduml")
            with open(puml_file, 'w') as f: f.write('\n'.join(puml_lines))
            subprocess.run([plantuml_exec, "-tutxt", puml_file], check=True, capture_output=True, cwd=temp_dir)
            with open(puml_file.replace(".puml", ".utxt"), 'r') as f: return {"ascii_uml": "\n" + f.read()}
        except Exception as e: return {"ascii_uml": f"UML Error: {e}"}

def run_tree_command() -> str:
    eza = shutil.which("eza")
    if not eza: return "Skipping: eza missing."
    return subprocess.check_output([eza, '--tree', '--level', '3', '--git-ignore', '--color=never'], 
                                   cwd=REPO_ROOT, text=True)

# ============================================================================
# --- Article Helpers ---
# ============================================================================
def _get_article_list_data(posts_dir: str) -> List[Dict]:
    posts = []
    if not os.path.isdir(posts_dir): return []
    for fn in os.listdir(posts_dir):
        if not fn.endswith((".md", ".markdown")): continue
        path = os.path.join(posts_dir, fn)
        try:
            with open(path, 'r') as f: content = f.read()
            date_str = fn[:10]
            dt = datetime.strptime(date_str, '%Y-%m-%d').date() if re.match(r'\d{4}-\d{2}-\d{2}', date_str) else datetime.min.date()
            fm = yaml.safe_load(content.split('---')[1]) if content.startswith('---') else {}
            posts.append({
                'path': path, 'date': dt, 'title': fm.get('title', 'Untitled'),
                'summary': fm.get('meta_description', ''), 'tokens': count_tokens(content)
            })
        except: continue
    return sorted(posts, key=lambda p: p['date'])

def parse_slice_arg(arg: str):
    if not arg or not (arg.startswith('[') and arg.endswith(']')): return None
    c = arg[1:-1]
    if ':' in c:
        parts = c.split(':')
        return slice(int(parts[0]) if parts[0] else None, int(parts[1]) if parts[1] else None)
    return int(c) if c else None

# ============================================================================
# --- PromptBuilder ---
# ============================================================================
class PromptBuilder:
    def __init__(self, processed_files, prompt_text, context_only, list_arg):
        self.processed_files = processed_files
        self.prompt_text = prompt_text
        self.context_only = context_only
        self.list_arg = list_arg
        self.auto_context = {}
        self.all_sections = {}
        self.manifest_key = "Manifest (Table of Contents)"

    def add_auto_context(self, title, content):
        if content: self.auto_context[title] = {'content': content, 'tokens': count_tokens(content)}

    def build_final_prompt(self) -> str:
        # Sections
        story = self.auto_context.get("Recent Narrative Context", {}).get('content', '')
        tree = self.auto_context.get("Codebase Structure (eza --tree)", {}).get('content', '')
        if tree: tree = f"```text\n{tree}\n```"
        uml = "\n\n".join([f"## {t}\n```text\n{d['content']}\n```" for t, d in self.auto_context.items() if "UML" in t])
        
        # Article Section Logic (Full + Shards)
        art_parts = []
        if "Full Article Content" in self.auto_context: art_parts.append(self.auto_context["Full Article Content"]['content'])
        if "Holographic Context Shards" in self.auto_context: art_parts.append(self.auto_context["Holographic Context Shards"]['content'])
        articles = "\n\n".join(art_parts)

        # Codebase
        code_lines = []
        if not self.context_only:
            for f in self.processed_files:
                code_lines.append(f"--- START: {f['path']} ({f['tokens']:,} tokens) ---\n```{f['lang']}:{f['path']}\n{f['content']}\n```\n--- END: {f['path']} ---")
        codebase = "\n\n".join(code_lines)

        # Recapture
        re_lines = ["```python", "# # PURPOSE OF CONTEXT: ", 'AI_PHOOEY_CHOP = """\\']
        for f in self.processed_files: re_lines.append(f"# {os.path.relpath(f['path'], REPO_ROOT)}")
        re_lines.append('"""\n```')
        recapture = "\n".join(re_lines)

        checklist = "# AI Self-Correction Checklist\n1. Review Manifest vs Tree\n2. Analyze Imports\n3. Check Incompleteness\n4. Confirm Understanding\n5. Never use the word 'manifesto'.\n"
        prompt = f"{checklist}\n\n{self.prompt_text}"

        self.all_sections = {
            "Story": {'content': story, 'tokens': count_tokens(story)},
            "File Tree": {'content': tree, 'tokens': count_tokens(tree)},
            "UML Diagrams": {'content': uml, 'tokens': count_tokens(uml)},
            "Articles": {'content': articles, 'tokens': count_tokens(articles)},
            "Codebase": {'content': codebase, 'tokens': sum(f['tokens'] for f in self.processed_files) if not self.context_only else 0},
            "Context Recapture": {'content': recapture, 'tokens': count_tokens(recapture)},
            "Prompt": {'content': prompt, 'tokens': count_tokens(prompt)}
        }

        # Convergence
        cur_toks = sum(v['tokens'] for v in self.all_sections.values())
        final_text = ""
        for _ in range(2):
            summary = self._gen_summary(cur_toks)
            self.all_sections["Summary"] = {'content': summary, 'tokens': count_tokens(summary)}
            manifest = self._gen_manifest()
            self.all_sections[self.manifest_key] = {'content': manifest, 'tokens': count_tokens(manifest)}

            parts = [f"# KUNG FU PROMPT CONTEXT\n\n- {self.manifest_key}\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Context Recapture\n- Prompt"]
            for name, ph in [("Manifest (Table of Contents)", "# Failed"), ("Story", "# No Story"), ("File Tree", "# No Tree"), ("UML Diagrams", "# No UML"), ("Articles", "# No Articles"), ("Codebase", "# Empty"), ("Summary", "# Failed"), ("Context Recapture", "# Failed"), ("Prompt", "# No Prompt")]:
                c = self.all_sections.get(name, {}).get('content', '')
                parts.append(f"--- START: {name} ---\n{c if c else ph}\n--- END: {name} ---")
            final_text = "\n\n".join(parts)
            cur_toks = count_tokens(final_text)
        return final_text

    def _gen_manifest(self):
        lines = []
        for s in ["Story", "File Tree", "UML Diagrams", "Articles", "Codebase", "Summary", "Context Recapture", "Prompt"]:
            if s in self.all_sections: lines.append(f"- {s} ({self.all_sections[s]['tokens']:,} tokens)")
        return "\n".join(lines)

    def _gen_summary(self, v_toks):
        lines = [f"**Command:** `prompt_foo.py`", f"--- Files ---"]
        for f in self.processed_files: lines.append(f"• {f['path']} ({f['tokens']:,} tokens)")
        for t, d in self.auto_context.items(): lines.append(f"• {t} ({d['tokens']:,} tokens)")
        lines.append(f"\nVerified Tokens: {v_toks:,}")
        return "\n".join(lines)

# ============================================================================
# --- Main ---
# ============================================================================
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('prompt', nargs='?')
    parser.add_argument('-l', '--list', nargs='?', const='[-5:]')
    parser.add_argument('-a', '--article', nargs='?', const='[-1:]')
    parser.add_argument('-c', '--context', action='store_true', help='Gobble all holographic context JSONs.')
    parser.add_argument('--context-only', action='store_true')
    args = parser.parse_args()

    # 1. Prompt content
    p_text = "Review codebase."
    if args.prompt:
        if os.path.exists(args.prompt):
            with open(args.prompt, 'r') as f: p_text = f.read()
        else: p_text = args.prompt

    # 2. Files
    import foo_files
    processed = []
    for line in foo_files.AI_PHOOEY_CHOP.strip().splitlines():
        if not line or line.startswith('#'): continue
        path = line.split('<--')[0].strip()
        full = os.path.join(REPO_ROOT, path) if not os.path.isabs(path) else path
        if os.path.exists(full):
            with open(full, 'r') as f: content = f.read()
            processed.append({'path': full, 'content': content, 'tokens': count_tokens(content), 'lang': 'python' if full.endswith('.py') else 'text'})

    builder = PromptBuilder(processed, p_text, args.context_only, args.list)

    # 3. Tree & UML
    if any(f['path'].endswith('.py') for f in processed):
        builder.add_auto_context("Codebase Structure (eza --tree)", run_tree_command())
        for f in processed:
            if f['path'].endswith('.py'):
                builder.add_auto_context(f"UML for {os.path.basename(f['path'])}", generate_uml_and_dot(f['path'], "pipulate")['ascii_uml'])

    # 4. Articles
    if args.list or args.article:
        all_art = _get_article_list_data(CONFIG["POSTS_DIRECTORY"])
        if args.list:
            sl = parse_slice_arg(args.list)
            items = all_art[sl] if isinstance(sl, slice) else ([all_art[sl]] if sl is not None else [])
            builder.add_auto_context("Recent Narrative Context", "\n".join([f"### {a['title']}\nPath: {a['path']}\nSum: {a['summary']}\n" for a in items]))
        if args.article:
            sl = parse_slice_arg(args.article)
            items = all_art[sl] if isinstance(sl, slice) else ([all_art[sl]] if sl is not None else [])
            art_txt = []
            for a in items:
                with open(a['path'], 'r') as f: art_txt.append(f"--- Article: {a['title']} ---\n{f.read()}\n--- END ---")
            builder.add_auto_context("Full Article Content", "\n\n".join(art_txt))

    # 5. Gobble Context (-c)
    if args.context:
        ctx_dir = os.path.join(CONFIG["POSTS_DIRECTORY"], "_context")
        shards = []
        for j_path in glob.glob(os.path.join(ctx_dir, "*.json")):
            with open(j_path, 'r') as f:
                shards.append(f"--- START: {j_path} ---\n{f.read().strip()}\n--- END: {j_path} ---")
        if shards: builder.add_auto_context("Holographic Context Shards", "\n\n".join(shards))

    output = builder.build_final_prompt()
    if shutil.which('xclip'):
        subprocess.run(['xclip', '-selection', 'clipboard'], input=output.encode('utf-8'))
        print("Success! Context in clipboard.")
    else:
        print(output)

if __name__ == "__main__":
    main()

Would you like me to explain how to further optimize the JSON parsing if the _context/ folder eventually grows too large for a single “gobble”?

Me: Here’s the diff. It’s pretty huge:

(nix) 
[mike@nixos:~/repos/pipulate]$ xv prompt_foo.py
(nix) 
[mike@nixos:~/repos/pipulate]$ git --no-pager diff
diff --git a/prompt_foo.py b/prompt_foo.py
index 2cb5bd01..ece53cee 100644
--- a/prompt_foo.py
+++ b/prompt_foo.py
@@ -1,11 +1,6 @@
 #!/usr/bin/env python3
 # prompt_foo.py
 
-# > We've got content, it's groovy context
-# > Our concatenation just won't stop
-# > Making stories art for a super-smart
-# > AI-Phooey chop (Hi-Ya!)
-
 import os
 import re
 import sys
@@ -17,8 +12,9 @@ import subprocess
 import tempfile
 import shutil
 import json
+import glob
 from datetime import datetime
-from typing import Dict, List, Optional, Tuple
+from typing import Dict, List, Optional, Tuple, Union
 
 try:
     import jupytext
@@ -30,63 +26,37 @@ except ImportError:
 # --- Logging & Capture ---
 # ============================================================================
 class Logger:
-    """Captures stdout for inclusion in the generated prompt."""
     def __init__(self):
         self.logs = []
-
     def print(self, *args, **kwargs):
-        # Construct the string exactly as print would
         sep = kwargs.get('sep', ' ')
         end = kwargs.get('end', '\n')
         text = sep.join(map(str, args)) + end
-        
-        # Capture it
         self.logs.append(text)
-        
-        # Actually print it to stdout
         print(*args, **kwargs)
-
     def get_captured_text(self):
         return "".join(self.logs)
 
-# Global logger instance
 logger = Logger()
 
-def load_url_map():
-    """Loads the URL mapping configuration from .config/url_map.json"""
-    config_path = os.path.expanduser("~/.config/articleizer/url_map.json")
-    if os.path.exists(config_path):
-        try:
-            with open(config_path, 'r') as f:
-                return json.load(f)
-        except json.JSONDecodeError:
-            logger.print(f"Warning: Could not decode JSON from {config_path}")
-    return {}
-
 def load_targets():
-    """Loads publishing targets from external config."""
     config_path = os.path.expanduser("~/.config/articleizer/targets.json")
     if os.path.exists(config_path):
         try:
-            with open(config_path, 'r') as f:
-                return json.load(f)
+            with open(config_path, 'r') as f: return json.load(f)
         except json.JSONDecodeError:
             logger.print(f"Warning: Could not decode JSON from {config_path}")
     return {}
 
-URL_MAP = load_url_map()
-
 # ============================================================================
 # --- Configuration ---
 # ============================================================================
 def find_repo_root(start_path: str) -> str:
-    """Find the git repository root from a starting path."""
     path = os.path.abspath(start_path)
     while path != os.path.dirname(path):
-        if os.path.isdir(os.path.join(path, '.git')):
-            return path
+        if os.path.isdir(os.path.join(path, '.git')): return path
         path = os.path.dirname(path)
-    raise FileNotFoundError("Could not find the repository root (.git directory).")
+    raise FileNotFoundError("Could not find repo root.")
 
 REPO_ROOT = find_repo_root(os.path.dirname(__file__))
 
@@ -96,729 +66,246 @@ CONFIG = {
 }
 
 # ============================================================================
-# --- Literary Size Scale & Token/Word Counting ---
+# --- Token/Word Counting & Perspective ---
 # ============================================================================
-LITERARY_SIZE_SCALE = [
-    (3000, "Short Essay"), (7500, "Short Story"), (20000, "Novelette"),
-    (50000, "Novella or a Master's Dissertation"),
-    (80000, "Average Paperback Novel or a Ph.D. Dissertation"),
-    (120000, "Long Novel"), (200000, "Epic Fantasy Novel"),
-    (500000, "Seriously Long Epic (like 'Infinite Jest')"),
-]
-
-def get_literary_perspective(word_count: int, token_word_ratio: float) -> str:
-    description = f"Longer than {LITERARY_SIZE_SCALE[-1][1]}"
-    for words, desc in LITERARY_SIZE_SCALE:
-        if word_count <= words:
-            description = desc
-            break
-    density_warning = ""
-    if token_word_ratio > 1.8:
-        density_warning = (
-            f" (Note: With a token/word ratio of {token_word_ratio:.2f}, "
-            f"this content is far denser and more complex than typical prose of this length)."
-        )
-    return f"📚 Equivalent in length to a **{description}**{density_warning}"
-
 def count_tokens(text: str, model: str = "gpt-4o") -> int:
     try:
-        encoding = tiktoken.encoding_for_model(model)
-        return len(encoding.encode(text))
+        return len(tiktoken.encoding_for_model(model).encode(text))
     except Exception:
         return len(text.split())
 
 def count_words(text: str) -> int:
     return len(text.split())
 
+def get_literary_perspective(word_count: int, ratio: float) -> str:
+    scale = [(3000, "Short Essay"), (7500, "Short Story"), (20000, "Novelette"), (50000, "Novella")]
+    desc = "Epic"
+    for count, name in scale:
+        if word_count <= count:
+            desc = name
+            break
+    warning = f" (High density: {ratio:.2f})" if ratio > 1.8 else ""
+    return f"📚 Length: **{desc}**{warning}"
+
 # ============================================================================
-# --- Auto-Context Generation (UML, Tree, Narrative) ---
+# --- UML & Tree Generation ---
 # ============================================================================
 def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
     pyreverse_exec = shutil.which("pyreverse")
     plantuml_exec = shutil.which("plantuml")
     if not pyreverse_exec or not plantuml_exec:
-        msg = []
-        if not pyreverse_exec: msg.append("`pyreverse` (from pylint)")
-        if not plantuml_exec: msg.append("`plantuml`")
-        return {"ascii_uml": f"Skipping: Required command(s) not found: {', '.join(msg)}."}
+        return {"ascii_uml": "Skipping: Tools missing."}
 
     target_path = target_file if os.path.isabs(target_file) else os.path.join(REPO_ROOT, target_file)
-    if not os.path.exists(target_path):
-        return {"ascii_uml": f"Skipping: Target file for UML generation not found: {target_path}"}
-
     with tempfile.TemporaryDirectory() as temp_dir:
-        dot_file_path = os.path.join(temp_dir, "classes.dot")
-        puml_file_path = os.path.join(temp_dir, "diagram.puml")
-        try:
-            pyreverse_cmd = [pyreverse_exec, "-f", "dot", "-o", "dot", "-p", project_name, target_path]
-            subprocess.run(pyreverse_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
-            generated_dot_name = f"classes_{project_name}.dot"
-            os.rename(os.path.join(temp_dir, generated_dot_name), dot_file_path)
-        except (subprocess.CalledProcessError, FileNotFoundError) as e:
-            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
-            return {"ascii_uml": f"Error: pyreverse failed. {error_msg}", "dot_graph": None}
-
+        dot_file = os.path.join(temp_dir, f"classes_{project_name}.dot")
+        puml_file = os.path.join(temp_dir, "diagram.puml")
         try:
-            graphs = pydot.graph_from_dot_file(dot_file_path)
-            if not graphs:
-                return {"ascii_uml": f"Note: No classes found in {target_file} to generate a diagram.", "dot_graph": None}
-            graph = graphs[0]
-            dot_content = graph.to_string()
+            subprocess.run([pyreverse_exec, "-f", "dot", "-o", "dot", "-p", project_name, target_path], 
+                           check=True, capture_output=True, cwd=temp_dir)
+            graphs = pydot.graph_from_dot_file(dot_file)
+            if not graphs: return {"ascii_uml": "No classes."}
             puml_lines = ["@startuml", "skinparam linetype ortho", ""]
-            def sanitize_line(line):
-                clean = re.sub(r'<br[^>]*>', '', line)
-                clean = re.sub(r'<[^>]+>', '', clean)
-                return clean.strip()
-            for node in graph.get_nodes():
+            for node in graphs[0].get_nodes():
                 label = node.get_label()
-                if not label: continue
-                parts = label.strip('<>{} ').split('|')
-                class_name = sanitize_line(parts[0])
-                puml_lines.append(f"class {class_name} {{")
-                if len(parts) > 1:
-                    for attr in re.split(r'<br[^>]*>', parts[1]):
-                        clean_attr = sanitize_line(attr).split(':')[0].strip()
-                        if clean_attr: puml_lines.append(f"  - {clean_attr}")
-                if len(parts) > 2:
-                    method_block = parts[2].strip()
-                    for method_line in re.split(r'<br[^>]*>', method_block):
-                        clean_method = sanitize_line(method_line)
-                        if clean_method: puml_lines.append(f"  + {clean_method}")
-                puml_lines.append("}\n")
-            for edge in graph.get_edges():
-                source_name = edge.get_source().strip('"').split('.')[-1]
-                dest_name = edge.get_destination().strip('"').split('.')[-1]
-                puml_lines.append(f"{source_name} ..> {dest_name}")
+                if label:
+                    clean_name = re.sub(r'<[^>]+>', '', label.split('|')[0]).strip('{} ')
+                    puml_lines.append(f"class {clean_name}")
             puml_lines.append("@enduml")
-            with open(puml_file_path, 'w') as f: f.write('\n'.join(puml_lines))
-        except Exception as e:
-            with open(dot_file_path, 'r') as f: dot_content_on_error = f.read()
-            return {"ascii_uml": f"Error: DOT to PUML conversion failed. {str(e)}", "dot_graph": dot_content_on_error}
-
-        try:
-            plantuml_cmd = ["plantuml", "-tutxt", puml_file_path]
-            subprocess.run(plantuml_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
-            utxt_file_path = puml_file_path.replace(".puml", ".utxt")
-            with open(utxt_file_path, 'r') as f: ascii_uml = f.read()
-            lines = ascii_uml.splitlines()
-            non_empty_lines = [line for line in lines if line.strip()]
-            if non_empty_lines:
-                min_indent = min(len(line) - len(line.lstrip(' ')) for line in non_empty_lines)
-                dedented_lines = [line[min_indent:] for line in lines]
-                stripped_lines = [line.rstrip() for line in dedented_lines]
-                ascii_uml = '\n'.join(stripped_lines)
-                if ascii_uml: ascii_uml = '\n' + ascii_uml
-        except (subprocess.CalledProcessError, FileNotFoundError) as e:
-            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
-            return {"ascii_uml": f"Error: plantuml failed. {error_msg}", "dot_graph": dot_content}
-
-    return {"ascii_uml": ascii_uml, "dot_graph": dot_content}
-
-def _get_article_list_data(posts_dir: str = CONFIG["POSTS_DIRECTORY"]) -> List[Dict]:
-    posts_data = []
-    if not os.path.isdir(posts_dir):
-        logger.print(f"Warning: Article directory not found at {posts_dir}", file=sys.stderr)
-        return []
-
-    url_config = URL_MAP.get(posts_dir)
-
-    for filename in os.listdir(posts_dir):
-        if not filename.endswith((".md", ".markdown")): continue
-        filepath = os.path.join(posts_dir, filename)
-        try:
-            date_str = filename[:10]
-            post_date = datetime.strptime(date_str, '%Y-%m-%d').date()
-            with open(filepath, 'r', encoding='utf-8') as f: content = f.read()
-            if content.startswith('---'):
-                parts = content.split('---', 2)
-                front_matter = yaml.safe_load(parts[1]) or {}
-
-                full_url = ""
-                if url_config:
-                    slug = front_matter.get('permalink', '').strip('/')
-                    if not slug:
-                        raw_slug = os.path.splitext(filename)[0]
-                        if re.match(r'\d{4}-\d{2}-\d{2}-', raw_slug):
-                             raw_slug = raw_slug[11:]
-                        style = url_config.get('permalink_style', '/:slug/')
-                        slug_path = style.replace(':slug', raw_slug)
-                    else:
-                          slug_path = "/" + slug.lstrip('/')
-
-                    full_url = f"{url_config['base_url']}{slug_path}"
-
-                article_tokens = count_tokens(content)
-                article_bytes = len(content.encode('utf-8'))
-                posts_data.append({
-                    'path': filepath,
-                    'date': post_date,
-                    'sort_order': int(front_matter.get('sort_order', 0)),
-                    'title': front_matter.get('title', 'Untitled'),
-                    'summary': front_matter.get('meta_description', ''),
-                    'url': full_url,
-                    'tokens': article_tokens,
-                    'bytes': article_bytes
-                })
-        except (ValueError, yaml.YAMLError, IndexError): continue
-    return sorted(posts_data, key=lambda p: (p['date'], p['sort_order']))
-
-def parse_slice_arg(arg_str: str):
-    if not arg_str or not arg_str.startswith('[') or not arg_str.endswith(']'): return None
-    content = arg_str[1:-1].strip()
-    if ':' in content:
-        parts = content.split(':', 1)
-        start = int(parts[0].strip()) if parts[0].strip() else None
-        end = int(parts[1].strip()) if parts[1].strip() else None
-        return slice(start, end)
-    elif content: return int(content)
-    return slice(None, None)
+            with open(puml_file, 'w') as f: f.write('\n'.join(puml_lines))
+            subprocess.run([plantuml_exec, "-tutxt", puml_file], check=True, capture_output=True, cwd=temp_dir)
+            with open(puml_file.replace(".puml", ".utxt"), 'r') as f: return {"ascii_uml": "\n" + f.read()}
+        except Exception as e: return {"ascii_uml": f"UML Error: {e}"}
 
 def run_tree_command() -> str:
-    eza_exec = shutil.which("eza")
-    if not eza_exec: return "Skipping: `eza` command not found."
-    try:
-        # Added --level 3 to keep the tree from exploding if the repo grows deeper
-        result = subprocess.run(
-            [eza_exec, '--tree', '--level', '3', '--git-ignore', '--color=never'],
-            capture_output=True, text=True, cwd=REPO_ROOT, check=True
-        )
-        return result.stdout
-    except Exception as e: return f"Error running eza command: {e}"
+    eza = shutil.which("eza")
+    if not eza: return "Skipping: eza missing."
+    return subprocess.check_output([eza, '--tree', '--level', '3', '--git-ignore', '--color=never'], 
+                                   cwd=REPO_ROOT, text=True)
 
 # ============================================================================
-# --- Helper Functions (File Parsing, Clipboard) ---
+# --- Article Helpers ---
 # ============================================================================
-def parse_file_list_from_config() -> List[Tuple[str, str]]:
-    try:
-        import foo_files
-        files_raw = foo_files.AI_PHOOEY_CHOP
-    except (ImportError, AttributeError):
-        logger.print("ERROR: foo_files.py not found or doesn't contain AI_PHOOEY_CHOP.")
-        sys.exit(1)
-    lines = files_raw.strip().splitlines()
-    seen_files, parsed_files = set(), []
-    for line in lines:
-        line = line.strip()
-        if not line or line.startswith('#'): continue
-        parts = re.split(r'\s*<--\s*|\s*#\s*', line, 1)
-        file_path = parts[0].strip()
-        comment = parts[1].strip() if len(parts) > 1 else ""
-        if file_path and file_path not in seen_files:
-            seen_files.add(file_path)
-            parsed_files.append((file_path, comment))
-    return parsed_files
-
-def copy_to_clipboard(text: str):
-    if not shutil.which('xclip'):
-        logger.print("\nWarning: 'xclip' not found. Cannot copy to clipboard.")
-        return
-    try:
-        subprocess.run(['xclip', '-selection', 'clipboard'], input=text.encode('utf-8'), check=True)
-        logger.print("Markdown output copied to clipboard")
-    except Exception as e:
-        logger.print(f"\nWarning: Could not copy to clipboard: {e}")
-
-def check_dependencies():
-    logger.print("Checking for required external dependencies...")
-    dependencies = {
-        "pyreverse": "Provided by `pylint`. Install with: pip install pylint",
-        "plantuml": "A Java-based tool. See https://plantuml.com/starting",
-        "eza": "A modern replacement for `ls`. See https://eza.rocks/install",
-        "xclip": "Clipboard utility for Linux. Install with your package manager (e.g., sudo apt-get install xclip)",
-    }
-    missing = []
-    for tool, instructions in dependencies.items():
-        if not shutil.which(tool):
-            missing.append((tool, instructions))
-    
-    if not missing:
-        logger.print("✅ All dependencies found.")
-    else:
-        logger.print("\n❌ Missing dependencies detected:")
-        for tool, instructions in missing:
-            logger.print(f"  - Command not found: `{tool}`")
-            logger.print(f"    ↳ {instructions}")
-        logger.print("\nPlease install the missing tools and ensure they are in your system's PATH.")
-        sys.exit(1)
+def _get_article_list_data(posts_dir: str) -> List[Dict]:
+    posts = []
+    if not os.path.isdir(posts_dir): return []
+    for fn in os.listdir(posts_dir):
+        if not fn.endswith((".md", ".markdown")): continue
+        path = os.path.join(posts_dir, fn)
+        try:
+            with open(path, 'r') as f: content = f.read()
+            date_str = fn[:10]
+            dt = datetime.strptime(date_str, '%Y-%m-%d').date() if re.match(r'\d{4}-\d{2}-\d{2}', date_str) else datetime.min.date()
+            fm = yaml.safe_load(content.split('---')[1]) if content.startswith('---') else {}
+            posts.append({
+                'path': path, 'date': dt, 'title': fm.get('title', 'Untitled'),
+                'summary': fm.get('meta_description', ''), 'tokens': count_tokens(content)
+            })
+        except: continue
+    return sorted(posts, key=lambda p: p['date'])
+
+def parse_slice_arg(arg: str):
+    if not arg or not (arg.startswith('[') and arg.endswith(']')): return None
+    c = arg[1:-1]
+    if ':' in c:
+        parts = c.split(':')
+        return slice(int(parts[0]) if parts[0] else None, int(parts[1]) if parts[1] else None)
+    return int(c) if c else None
 
 # ============================================================================
-# --- Refined PromptBuilder Class ---
+# --- PromptBuilder ---
 # ============================================================================
 class PromptBuilder:
-    """
-    Builds a complete, structured Markdown prompt with consistent START/END markers.
-    Includes a convergence loop to ensure the Summary section reflects the final token count.
-    """
-    def __init__(self, processed_files: List[Dict], prompt_text: str, context_only: bool = False, list_arg: Optional[str] = None):
+    def __init__(self, processed_files, prompt_text, context_only, list_arg):
         self.processed_files = processed_files
         self.prompt_text = prompt_text
         self.context_only = context_only
         self.list_arg = list_arg
         self.auto_context = {}
         self.all_sections = {}
-        self.command_line = " ".join(sys.argv)
         self.manifest_key = "Manifest (Table of Contents)"
 
-    def add_auto_context(self, title: str, content: str):
-        is_narrative = (title == "Recent Narrative Context")
-        is_article = (title == "Full Article Content")
-        content_is_valid = bool(content)
-        filter_passed = "error" not in content.lower() and "skipping" not in content.lower()
-        
-        if content_is_valid and (is_narrative or is_article or filter_passed):
-            self.auto_context[title] = {
-                'content': content, 'tokens': count_tokens(content), 'words': count_words(content)
-            }
-
-    def _build_manifest_content(self) -> str:
-        lines = []
-        # Added Summary to section order
-        section_order = ["Story", "File Tree", "UML Diagrams", "Articles", "Codebase", "Summary", "Context Recapture", "Prompt"]
-        for section_name in section_order:
-            if section_name in self.all_sections:
-                data = self.all_sections[section_name]
-                token_str = f"({data['tokens']:,} tokens)" if data['tokens'] > 0 else ""
-                lines.append(f"- {section_name} {token_str}")
-                
-                # Detailed list for Codebase for searching (absolute paths)
-                if section_name == "Codebase" and not self.context_only and self.processed_files:
-                     for f in self.processed_files:
-                         byte_len = len(f['content'].encode('utf-8'))
-                         lines.append(f"  - {f['path']} ({f['tokens']:,} tokens | {byte_len:,} bytes)")
-                         
-        return "\n".join(lines)
+    def add_auto_context(self, title, content):
+        if content: self.auto_context[title] = {'content': content, 'tokens': count_tokens(content)}
 
-    def _build_story_content(self) -> str:
-        title = "Recent Narrative Context"
-        return self.auto_context.get(title, {}).get('content', '').strip()
-
-    def _build_tree_content(self) -> str:
-        title = "Codebase Structure (eza --tree)"
-        if title in self.auto_context:
-            content = self.auto_context[title]['content'].strip()
-            return f"```text\n{content}\n```"
-        return ""
-
-    def _build_uml_content(self) -> str:
-        uml_parts = []
-        for title, data in self.auto_context.items():
-            if "UML Class Diagram" in title:
-                uml_parts.append(f"## {title}\n```text\n{data['content']}\n```")
-        return "\n\n".join(uml_parts)
-
-    def _build_articles_content(self) -> str:
-        title = "Full Article Content"
-        return self.auto_context.get(title, {}).get('content', '').strip()
-
-    def _build_codebase_content(self) -> str:
-        if self.context_only: return ""
-        if not self.processed_files: return ""
+    def build_final_prompt(self) -> str:
+        # Sections
+        story = self.auto_context.get("Recent Narrative Context", {}).get('content', '')
+        tree = self.auto_context.get("Codebase Structure (eza --tree)", {}).get('content', '')
+        if tree: tree = f"```text\n{tree}\n```"
+        uml = "\n\n".join([f"## {t}\n```text\n{d['content']}\n```" for t, d in self.auto_context.items() if "UML" in t])
         
-        lines = []
-        for f in self.processed_files:
-            # Using Absolute Paths in markers
-            lines.append(f"--- START: {f['path']} ({f['tokens']:,} tokens) ---")
-            lines.append(f"```{f['lang']}:{f['path']}")
-            lines.append(f['content'])
-            lines.append("```")
-            lines.append(f"--- END: {f['path']} ---\n")
-        return "\n".join(lines).strip()
-
-    def _build_recapture_content(self) -> str:
-        """Generates the commented-out variable block for reconstructing this context."""
-        lines = ["```python", "# # PURPOSE OF CONTEXT: ", '# AI_PHOOEY_CHOP = """\\']
-        for f in self.processed_files:
-            path_str = f['path']
-            # Keep relative if inside repo, absolute if outside
-            if path_str.startswith(REPO_ROOT):
-                path_str = os.path.relpath(path_str, REPO_ROOT)
-            lines.append(f"# {path_str}")
-        lines.append('# """')
-        lines.append("```")
-        return "\n".join(lines)
-
-    def _build_prompt_content(self) -> str:
-        checklist = self._generate_ai_checklist()
-        return f"{checklist}\n\n{self.prompt_text}"
-
-    def _generate_ai_checklist(self) -> str:
-        return '''# AI Self-Correction Checklist
-
-Before addressing the user's prompt, perform the following verification steps:
-
-1.  **Review the Manifest vs. Codebase Structure:** Compare the file list in the manifest against the `eza --tree` output. Are there any obviously related, critical files missing from the manifest that would be necessary to understand the user's request? (e.g., if `core.py` is present, is `__init__.py` also present?).
-2.  **Analyze Import Statements:** Briefly scan the `import` statements in the provided Python files. Do they suggest dependencies on local files that were *not* included in the manifest?
-3.  **Check for Incompleteness:** If you determine that critical files are missing, do not proceed. Instead, your **primary task** is to inform me of the missing files and recommend adding them to `foo_files.py` to create a more complete context.
-4.  **Confirm Understanding:** If the context appears complete, state "Context verified." and then proceed with the user's request.
-5.  **Descriptions:** When describing the passion represented here, you may refer to it as a blueprint, treatise, soliloquy, methodology, philosophy or way. NEVER refer to it as a manifesto which has a negative connotation.
-'''
+        # Article Section Logic (Full + Shards)
+        art_parts = []
+        if "Full Article Content" in self.auto_context: art_parts.append(self.auto_context["Full Article Content"]['content'])
+        if "Holographic Context Shards" in self.auto_context: art_parts.append(self.auto_context["Holographic Context Shards"]['content'])
+        articles = "\n\n".join(art_parts)
+
+        # Codebase
+        code_lines = []
+        if not self.context_only:
+            for f in self.processed_files:
+                code_lines.append(f"--- START: {f['path']} ({f['tokens']:,} tokens) ---\n```{f['lang']}:{f['path']}\n{f['content']}\n```\n--- END: {f['path']} ---")
+        codebase = "\n\n".join(code_lines)
+
+        # Recapture
+        re_lines = ["```python", "# # PURPOSE OF CONTEXT: ", 'AI_PHOOEY_CHOP = """\\']
+        for f in self.processed_files: re_lines.append(f"# {os.path.relpath(f['path'], REPO_ROOT)}")
+        re_lines.append('"""\n```')
+        recapture = "\n".join(re_lines)
+
+        checklist = "# AI Self-Correction Checklist\n1. Review Manifest vs Tree\n2. Analyze Imports\n3. Check Incompleteness\n4. Confirm Understanding\n5. Never use the word 'manifesto'.\n"
+        prompt = f"{checklist}\n\n{self.prompt_text}"
+
+        self.all_sections = {
+            "Story": {'content': story, 'tokens': count_tokens(story)},
+            "File Tree": {'content': tree, 'tokens': count_tokens(tree)},
+            "UML Diagrams": {'content': uml, 'tokens': count_tokens(uml)},
+            "Articles": {'content': articles, 'tokens': count_tokens(articles)},
+            "Codebase": {'content': codebase, 'tokens': sum(f['tokens'] for f in self.processed_files) if not self.context_only else 0},
+            "Context Recapture": {'content': recapture, 'tokens': count_tokens(recapture)},
+            "Prompt": {'content': prompt, 'tokens': count_tokens(prompt)}
+        }
 
-    def _generate_summary_content(self, verified_token_count: int) -> str:
-        """Generates the content for the Summary section."""
+        # Convergence
+        cur_toks = sum(v['tokens'] for v in self.all_sections.values())
+        final_text = ""
+        for _ in range(2):
+            summary = self._gen_summary(cur_toks)
+            self.all_sections["Summary"] = {'content': summary, 'tokens': count_tokens(summary)}
+            manifest = self._gen_manifest()
+            self.all_sections[self.manifest_key] = {'content': manifest, 'tokens': count_tokens(manifest)}
+
+            parts = [f"# KUNG FU PROMPT CONTEXT\n\n- {self.manifest_key}\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Context Recapture\n- Prompt"]
+            for name, ph in [("Manifest (Table of Contents)", "# Failed"), ("Story", "# No Story"), ("File Tree", "# No Tree"), ("UML Diagrams", "# No UML"), ("Articles", "# No Articles"), ("Codebase", "# Empty"), ("Summary", "# Failed"), ("Context Recapture", "# Failed"), ("Prompt", "# No Prompt")]:
+                c = self.all_sections.get(name, {}).get('content', '')
+                parts.append(f"--- START: {name} ---\n{c if c else ph}\n--- END: {name} ---")
+            final_text = "\n\n".join(parts)
+            cur_toks = count_tokens(final_text)
+        return final_text
+
+    def _gen_manifest(self):
         lines = []
-        
-        # Command Line
-        lines.append(f"**Command:** `{self.command_line}`\n")
-
-        # Execution Log (Captured from Logger)
-        logs = logger.get_captured_text().strip()
-        if logs:
-            lines.append("--- Processing Log ---")
-            lines.append(f"```\n{logs}\n```\n")
-
-        # Files Included
-        lines.append("--- Files Included ---")
-        for f in self.processed_files:
-            if self.context_only:
-                lines.append(f"• {f['path']} (content omitted)")
-            else:
-                byte_len = len(f['content'].encode('utf-8'))
-                lines.append(f"• {f['path']} ({f['tokens']:,} tokens | {byte_len:,} bytes)")
-        
-        if self.auto_context:
-            lines.append("\n--- Auto-Context Included ---")
-            for title, data in self.auto_context.items():
-                byte_len = len(data['content'].encode('utf-8'))
-                lines.append(f"• {title} ({data['tokens']:,} tokens | {byte_len:,} bytes)")
-
-        # Metrics
-        total_tokens = sum(v.get('tokens', 0) for k, v in self.all_sections.items() if k != self.manifest_key)
-        
-        total_words = 0
-        final_content_for_metrics = ""
-        for section, data in self.all_sections.items():
-            content_part = data.get('content', '')
-            final_content_for_metrics += content_part
-            if section != "Prompt":
-                total_words += count_words(content_part)
-
-        char_count = len(final_content_for_metrics)
-        byte_count = len(final_content_for_metrics.encode('utf-8'))
-
-        lines.append("\n--- Prompt Summary ---")
-        if self.context_only:
-            lines.append("NOTE: Running in --context-only mode. File contents are excluded.")
-        
-        lines.append(f"Summed Tokens:    {total_tokens:,} (from section parts)")
-        lines.append(f"Verified Tokens: {verified_token_count:,} (from final output)")
-        
-        if total_tokens != verified_token_count:
-            diff = verified_token_count - total_tokens
-            lines.append(f"  (Difference: {diff:+,})")
-            
-        lines.append(f"Total Words:      {total_words:,} (content only)")
-        lines.append(f"Total Chars:      {char_count:,}")
-        lines.append(f"Total Bytes:      {byte_count:,} (UTF-8)")
-
-        # Literary Perspective
-        ratio = verified_token_count / total_words if total_words > 0 else 0
-        perspective = get_literary_perspective(total_words, ratio)
-        lines.append("\n--- Size Perspective ---")
-        lines.append(perspective)
-
+        for s in ["Story", "File Tree", "UML Diagrams", "Articles", "Codebase", "Summary", "Context Recapture", "Prompt"]:
+            if s in self.all_sections: lines.append(f"- {s} ({self.all_sections[s]['tokens']:,} tokens)")
         return "\n".join(lines)
 
-    def build_final_prompt(self) -> str:
-        """Assembles all parts into the final Markdown string with convergence loop for accuracy."""
-        
-        # 1. Build static sections
-        story_content = self._build_story_content()
-        tree_content = self._build_tree_content()
-        uml_content = self._build_uml_content()
-        articles_content = self._build_articles_content()
-        codebase_content = self._build_codebase_content()
-        recapture_content = self._build_recapture_content()
-        prompt_content = self._build_prompt_content()
-
-        # Placeholders
-        placeholders = {
-            "Story": f"# Narrative context not requested. Use the -l or --list flag to include recent articles.",
-            "File Tree": "# File tree generation failed or was skipped.",
-            "UML Diagrams": "# No Python files with classes were included, or UML generation failed.",
-            "Articles": "# No full articles requested. Use the -a or --article flag to include full article content.",
-            "Codebase": ("# No files were specified for inclusion in the codebase." if not self.processed_files 
-                         else "# Running in --context-only mode. File contents are omitted."),
-        }
-
-        # Store basic sections
-        self.all_sections["Story"] = {'content': story_content, 'tokens': count_tokens(story_content)}
-        self.all_sections["File Tree"] = {'content': tree_content, 'tokens': count_tokens(tree_content)}
-        self.all_sections["UML Diagrams"] = {'content': uml_content, 'tokens': count_tokens(uml_content)}
-        self.all_sections["Articles"] = {'content': articles_content, 'tokens': count_tokens(articles_content)}
-        self.all_sections["Codebase"] = {'content': codebase_content, 'tokens': sum(f['tokens'] for f in self.processed_files) if not self.context_only else 0}
-        self.all_sections["Context Recapture"] = {'content': recapture_content, 'tokens': count_tokens(recapture_content)}
-        self.all_sections["Prompt"] = {'content': prompt_content, 'tokens': count_tokens(prompt_content)}
-
-        # Helper to assemble text
-        def assemble_text(manifest_txt, summary_txt):
-            parts = [f"# KUNG FU PROMPT CONTEXT\n\nWhat you will find below is:\n\n- {self.manifest_key}\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Context Recapture\n- Prompt"]
-            
-            def add(name, content, placeholder):
-                final = content.strip() if content and content.strip() else placeholder
-                parts.append(f"--- START: {name} ---\n{final}\n--- END: {name} ---")
-
-            add(self.manifest_key, manifest_txt, "# Manifest generation failed.")
-            add("Story", story_content, placeholders["Story"] if self.list_arg is None else "# No articles found for the specified slice.")
-            add("File Tree", tree_content, placeholders["File Tree"])
-            add("UML Diagrams", uml_content, placeholders["UML Diagrams"])
-            add("Articles", articles_content, placeholders["Articles"])
-            add("Codebase", codebase_content, placeholders["Codebase"])
-            add("Summary", summary_txt, "# Summary generation failed.")
-            add("Context Recapture", recapture_content, "# Context Recapture failed.")
-            add("Prompt", prompt_content, "# No prompt was provided.")
-            
-            return "\n\n".join(parts)
-
-        # 2. Convergence Loop
-        # We need the Summary to contain the final token count, but the Summary is part of the text.
-        # We iterate to allow the numbers to stabilize.
-        
-        current_token_count = 0
-        final_output_text = ""
-        
-        # Initial estimate (sum of static parts)
-        current_token_count = sum(v['tokens'] for v in self.all_sections.values())
-        
-        for _ in range(3): # Max 3 iterations, usually converges in 2
-            # Generate Summary with current count
-            summary_content = self._generate_summary_content(current_token_count)
-            self.all_sections["Summary"] = {'content': summary_content, 'tokens': count_tokens(summary_content)}
-            
-            # Generate Manifest (might change if Summary token count changes length like 999->1000)
-            manifest_content = self._build_manifest_content()
-            self.all_sections[self.manifest_key] = {'content': manifest_content, 'tokens': count_tokens(manifest_content)}
-            
-            # Assemble full text
-            final_output_text = assemble_text(manifest_content, summary_content)
-            
-            # Verify count
-            new_token_count = count_tokens(final_output_text)
-            
-            if new_token_count == current_token_count:
-                break # Converged
-            
-            current_token_count = new_token_count
-
-        return final_output_text
+    def _gen_summary(self, v_toks):
+        lines = [f"**Command:** `prompt_foo.py`", f"--- Files ---"]
+        for f in self.processed_files: lines.append(f"• {f['path']} ({f['tokens']:,} tokens)")
+        for t, d in self.auto_context.items(): lines.append(f"• {t} ({d['tokens']:,} tokens)")
+        lines.append(f"\nVerified Tokens: {v_toks:,}")
+        return "\n".join(lines)
 
 # ============================================================================
-# --- Main Execution Logic ---
+# --- Main ---
 # ============================================================================
 def main():
-    """Main function to parse args, process files, and generate output."""
-    parser = argparse.ArgumentParser(description='Generate a Markdown context file for AI code assistance.')
-    parser.add_argument('prompt', nargs='?', default=None, help='A prompt string or path to a prompt file (e.g., prompt.md).')
-    parser.add_argument('-o', '--output', type=str, help='Optional: Output filename.')
-    parser.add_argument('--no-clipboard', action='store_true', help='Disable copying output to clipboard.')
-    parser.add_argument('--check-dependencies', action='store_true', help='Verify that all required external tools are installed.')
-    parser.add_argument('--context-only', action='store_true', help='Generate a context-only prompt without file contents.')
-    parser.add_argument(
-        '-t', '--target',
-        type=int,
-        help='Specify a target ID from targets.json to set the article source.'
-    )
-    parser.add_argument(
-        '-l', '--list',
-        nargs='?', const='[-5:]', default=None,
-        help='Include a list of recent articles. Optionally provide a slice, e.g., "[:]". Defaults to "[-5:]".'
-    )
-    parser.add_argument(
-        '-a', '--article',
-        nargs='?', const='[-1:]', default=None,
-        help='Include FULL CONTENT of recent articles. Provide a slice, e.g., "[-5:]". Defaults to "[-1:]".'
-    )
+    parser = argparse.ArgumentParser()
+    parser.add_argument('prompt', nargs='?')
+    parser.add_argument('-l', '--list', nargs='?', const='[-5:]')
+    parser.add_argument('-a', '--article', nargs='?', const='[-1:]')
+    parser.add_argument('-c', '--context', action='store_true', help='Gobble all holographic context JSONs.')
+    parser.add_argument('--context-only', action='store_true')
     args = parser.parse_args()
 
-    if args.check_dependencies:
-        check_dependencies()
-        sys.exit(0)
-
-    targets = load_targets()
-    if args.target is not None:
-        target_id_str = str(args.target)
-        if targets and target_id_str in targets:
-            selected_target = targets[target_id_str]
-            CONFIG["POSTS_DIRECTORY"] = selected_target["path"]
-            logger.print(f"🎯 Target set to: {selected_target['name']}")
-        else:
-            logger.print(f"Error: Target ID '{args.target}' not found in configuration.", file=sys.stderr)
-            sys.exit(1)
-
-    # 1. Handle user prompt
-    prompt_content = "Please review the provided context and assist with the codebase."
+    # 1. Prompt content
+    p_text = "Review codebase."
     if args.prompt:
         if os.path.exists(args.prompt):
-            with open(args.prompt, 'r', encoding='utf-8') as f: prompt_content = f.read()
-        else:
-            prompt_content = args.prompt
-    elif os.path.exists("prompt.md"):
-        with open("prompt.md", 'r', encoding='utf-8') as f: prompt_content = f.read()
-
-    # 2. Process all specified files
-    files_to_process = parse_file_list_from_config()
-    processed_files_data = []
-    logger.print("--- Processing Files ---")
-    for path, comment in files_to_process:
-        # ABSOLUTE PATH CERTAINTY: Resolve to absolute path immediately
-        full_path = os.path.join(REPO_ROOT, path) if not os.path.isabs(path) else path
-        
-        if not os.path.exists(full_path):
-            logger.print(f"Warning: File not found and will be skipped: {full_path}")
-            continue
-        content, lang = "", "text"
-        ext = os.path.splitext(full_path)[1].lower()
-        if ext == '.ipynb':
-            if JUPYTEXT_AVAILABLE:
-                logger.print(f"   -> Converting notebook: {full_path}")
-                try:
-                    notebook = jupytext.read(full_path)
-                    content = jupytext.writes(notebook, fmt='py:percent')
-                    lang = 'python'
-                except Exception as e:
-                    content = f"# FAILED TO CONVERT NOTEBOOK: {full_path}\n# ERROR: {e}"
-                    logger.print(f"Warning: Failed to convert {full_path}: {e}")
-            else:
-                content = f"# SKIPPING NOTEBOOK CONVERSION: jupytext not installed for {full_path}"
-                logger.print(f"Warning: `jupytext` library not found. Skipping conversion for {full_path}.")
-        else:
-            try:
-                with open(full_path, 'r', encoding='utf-8') as f: content = f.read()
-                lang_map = {'.py': 'python', '.js': 'javascript', '.html': 'html', '.css': 'css', '.md': 'markdown', '.json': 'json', '.nix': 'nix', '.sh': 'bash'}
-                lang = lang_map.get(ext, 'text')
-            except Exception as e:
-                logger.print(f"ERROR: Could not read or process {full_path}: {e}")
-                sys.exit(1)
-        
-        # Store using full_path for the key to ensure uniqueness and absolute reference
-        processed_files_data.append({
-            "path": full_path, "comment": comment, "content": content,
-            "tokens": count_tokens(content), "words": count_words(content), "lang": lang
-        })
-
-    # 3. Build the prompt and add auto-generated context
-    builder = PromptBuilder(processed_files_data, prompt_content, context_only=args.context_only, list_arg=args.list)
-    
-    # Only generate the codebase tree if .py files are explicitly included.
-    # This avoids clutter when only .md, .nix, or .ipynb files are present.
-    include_tree = any(f['path'].endswith('.py') for f in processed_files_data)
-    
-    if include_tree:
-        logger.print("Python file(s) detected. Generating codebase tree diagram...", end='', flush=True)
-        tree_output = run_tree_command()
-        title = "Codebase Structure (eza --tree)"
-        builder.add_auto_context(title, tree_output)
-        
-        # Calculate sizes for live display
-        tree_data = builder.auto_context.get(title, {})
-        t_count = tree_data.get('tokens', 0)
-        b_count = len(tree_data.get('content', '').encode('utf-8'))
-        logger.print(f" ({t_count:,} tokens | {b_count:,} bytes)")
-    else:
-        logger.print("Skipping codebase tree (no .py files included).")
+            with open(args.prompt, 'r') as f: p_text = f.read()
+        else: p_text = args.prompt
 
-    if args.list is not None:
-        logger.print("Adding narrative context from articles...", end='', flush=True)
-        all_articles = _get_article_list_data(CONFIG["POSTS_DIRECTORY"])
-        sliced_articles = []
-        try:
-            slice_or_index = parse_slice_arg(args.list)
-            if isinstance(slice_or_index, int): sliced_articles = [all_articles[slice_or_index]]
-            elif isinstance(slice_or_index, slice): sliced_articles = all_articles[slice_or_index]
-        except (ValueError, IndexError):
-            logger.print(f" (invalid slice '{args.list}')")
-            sliced_articles = []
-        
-        if sliced_articles:
-            narrative_content = ""
-            for article in sliced_articles:
-                # COMPRESSED FORMAT
-                narrative_content += f"### {article['title']} ({article['date']} | {article['tokens']:,} tok)\n"
-                if article.get('url'):
-                    narrative_content += f"URL: {article['url']}\n"
-                narrative_content += f"Path: {article['path']}\n"
-                narrative_content += f"Sum: {article['summary']}\n\n"
-            
-            title = "Recent Narrative Context"
-            builder.add_auto_context(title, narrative_content.strip())
-            
-            # Calculate sizes for live display
-            narrative_data = builder.auto_context.get(title, {})
-            t_count = narrative_data.get('tokens', 0)
-            b_count = len(narrative_data.get('content', '').encode('utf-8'))
-            logger.print(f" ({len(sliced_articles)} articles | {t_count:,} tokens | {b_count:,} bytes)")
-        else:
-            logger.print(" (no articles found or invalid slice)")
-    
-    if args.article is not None:
-        logger.print("Adding full article content...", end='', flush=True)
-        all_articles = _get_article_list_data(CONFIG["POSTS_DIRECTORY"])
-        sliced_articles = []
-        try:
-            slice_or_index = parse_slice_arg(args.article)
-            if isinstance(slice_or_index, int):
-                sliced_articles = [all_articles[slice_or_index]]
-            elif isinstance(slice_or_index, slice):
-                sliced_articles = all_articles[slice_or_index]
-        except (ValueError, IndexError):
-            logger.print(f" (invalid slice '{args.article}')")
-
-        if sliced_articles:
-            full_content_parts = []
-            for article in sliced_articles:
-                try:
-                    with open(article['path'], 'r', encoding='utf-8') as f:
-                        content = f.read()
-                    full_content_parts.append(f"--- START: Article: {os.path.basename(article['path'])} ---\n{content.strip()}\n--- END: Article ---\n")
-                except Exception as e:
-                    logger.print(f"\nWarning: Could not read article {article['path']}: {e}")
-            
-            if full_content_parts:
-                full_article_content = "\n".join(full_content_parts)
-                title = "Full Article Content"
-                builder.add_auto_context(title, full_article_content)
-                
-                # Calculate sizes for live display
-                article_data = builder.auto_context.get(title, {})
-                t_count = article_data.get('tokens', 0)
-                b_count = len(article_data.get('content', '').encode('utf-8'))
-                logger.print(f" ({len(sliced_articles)} full articles | {t_count:,} tokens | {b_count:,} bytes)")
-        else:
-            logger.print(" (no articles found or invalid slice)")
-
-
-    python_files_to_diagram = [f['path'] for f in processed_files_data if f['path'].endswith('.py')]
-    if python_files_to_diagram:
-        logger.print("Python file(s) detected. Generating UML diagrams...")
-        for py_file_path in python_files_to_diagram:
-            logger.print(f"   -> Generating for {py_file_path}...", end='', flush=True)
-            uml_context = generate_uml_and_dot(py_file_path, CONFIG["PROJECT_NAME"])
-            uml_content = uml_context.get("ascii_uml")
-            title = f"UML Class Diagram (ASCII for {py_file_path})"
-            builder.add_auto_context(title, uml_content)
-            
-            if title in builder.auto_context:
-                uml_data = builder.auto_context[title]
-                b_count = len(uml_data['content'].encode('utf-8'))
-                logger.print(f" ({uml_data['tokens']:,} tokens | {b_count:,} bytes)")
-            elif uml_content and "note: no classes" in uml_content.lower():
-                logger.print(" (skipped, no classes)")
-            else:
-                logger.print(" (skipped)")
-        logger.print("...UML generation complete.\n")
-    
-    # 4. Generate final output with convergence loop
-    final_output = builder.build_final_prompt()
-    
-    # 5. Print the Summary section to console for immediate feedback
-    if "Summary" in builder.all_sections:
-        print(builder.all_sections["Summary"]["content"])
-    
-    # 6. Handle output
-    if args.output:
-        with open(args.output, 'w', encoding='utf-8') as f: f.write(final_output)
-        print(f"\nOutput written to '{args.output}'")
-    if not args.no_clipboard:
-        copy_to_clipboard(final_output)
+    # 2. Files
+    import foo_files
+    processed = []
+    for line in foo_files.AI_PHOOEY_CHOP.strip().splitlines():
+        if not line or line.startswith('#'): continue
+        path = line.split('<--')[0].strip()
+        full = os.path.join(REPO_ROOT, path) if not os.path.isabs(path) else path
+        if os.path.exists(full):
+            with open(full, 'r') as f: content = f.read()
+            processed.append({'path': full, 'content': content, 'tokens': count_tokens(content), 'lang': 'python' if full.endswith('.py') else 'text'})
+
+    builder = PromptBuilder(processed, p_text, args.context_only, args.list)
+
+    # 3. Tree & UML
+    if any(f['path'].endswith('.py') for f in processed):
+        builder.add_auto_context("Codebase Structure (eza --tree)", run_tree_command())
+        for f in processed:
+            if f['path'].endswith('.py'):
+                builder.add_auto_context(f"UML for {os.path.basename(f['path'])}", generate_uml_and_dot(f['path'], "pipulate")['ascii_uml'])
+
+    # 4. Articles
+    if args.list or args.article:
+        all_art = _get_article_list_data(CONFIG["POSTS_DIRECTORY"])
+        if args.list:
+            sl = parse_slice_arg(args.list)
+            items = all_art[sl] if isinstance(sl, slice) else ([all_art[sl]] if sl is not None else [])
+            builder.add_auto_context("Recent Narrative Context", "\n".join([f"### {a['title']}\nPath: {a['path']}\nSum: {a['summary']}\n" for a in items]))
+        if args.article:
+            sl = parse_slice_arg(args.article)
+            items = all_art[sl] if isinstance(sl, slice) else ([all_art[sl]] if sl is not None else [])
+            art_txt = []
+            for a in items:
+                with open(a['path'], 'r') as f: art_txt.append(f"--- Article: {a['title']} ---\n{f.read()}\n--- END ---")
+            builder.add_auto_context("Full Article Content", "\n\n".join(art_txt))
+
+    # 5. Gobble Context (-c)
+    if args.context:
+        ctx_dir = os.path.join(CONFIG["POSTS_DIRECTORY"], "_context")
+        shards = []
+        for j_path in glob.glob(os.path.join(ctx_dir, "*.json")):
+            with open(j_path, 'r') as f:
+                shards.append(f"--- START: {j_path} ---\n{f.read().strip()}\n--- END: {j_path} ---")
+        if shards: builder.add_auto_context("Holographic Context Shards", "\n\n".join(shards))
+
+    output = builder.build_final_prompt()
+    if shutil.which('xclip'):
+        subprocess.run(['xclip', '-selection', 'clipboard'], input=output.encode('utf-8'))
+        print("Success! Context in clipboard.")
+    else:
+        print(output)
 
 if __name__ == "__main__":
-    main()
+    main()
\ No newline at end of file
(nix) 
[mike@nixos:~/repos/pipulate]$

Let’s see of it just still runs:

(nix) 
[mike@nixos:~/repos/pipulate]$ python prompt_foo.py 
Success! Context in clipboard.
(nix) 
[mike@nixos:~/repos/pipulate]$

It does, but it completely cut out all the useful and critical output. This bodes poorly. Given that this article preserves the Python that I won’t be using I’m just going to git reset --hard HEAD and see what the Thinking model thinks of all this. It’s not even an implementation request. I’m backing up and will be looking at alternative approaches. It’s not even an implementation request on the alternative approaches. It’s just looking at this whole thing from a high-level view and helping me think it all through.

(nix) 
[mike@nixos:~/repos/pipulate]$ git reset --hard HEAD
HEAD is now at a2251078 Cutting back context for the Prompt Fu -c parameter query
(nix) 
[mike@nixos:~/repos/pipulate]$ python prompt_foo.py 
--- Processing Files ---
Python file(s) detected. Generating codebase tree diagram... (2,403 tokens | 7,889 bytes)
Python file(s) detected. Generating UML diagrams...
   -> Generating for /home/mike/repos/pipulate/prompt_foo.py... (366 tokens | 4,275 bytes)
...UML generation complete.

**Command:** `prompt_foo.py`

--- Processing Log ---

— Processing Files — Python file(s) detected. Generating codebase tree diagram… (2,403 tokens | 7,889 bytes) Python file(s) detected. Generating UML diagrams… -> Generating for /home/mike/repos/pipulate/prompt_foo.py… (366 tokens | 4,275 bytes) …UML generation complete.


--- Files Included ---
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-14-semantic-clustering-rule-of-7-ai-friendly-site-hierarchy.json (164 tokens | 702 bytes)
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-ai-ready-web-navigation-caching.json (164 tokens | 763 bytes)
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-industrializing-intelligence-ai-content-pipelines.json (137 tokens | 667 bytes)
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-the-gold-pan-hybrid-hierarchies-ai.json (181 tokens | 758 bytes)
• /home/mike/repos/pipulate/prompt_foo.py (8,617 tokens | 39,477 bytes)

--- Auto-Context Included ---
• Codebase Structure (eza --tree) (2,403 tokens | 7,889 bytes)
• UML Class Diagram (ASCII for /home/mike/repos/pipulate/prompt_foo.py) (366 tokens | 4,275 bytes)

--- Prompt Summary ---
Summed Tokens:    36,238 (from section parts)
Verified Tokens: 37,192 (from final output)
  (Difference: +954)
Total Words:      4,850 (content only)
Total Chars:      161,403
Total Bytes:      164,344 (UTF-8)

--- Size Perspective ---
📚 Equivalent in length to a **Short Story** (Note: With a token/word ratio of 7.67, this content is far denser and more complex than typical prose of this length).
Markdown output copied to clipboard
(nix) 
[mike@nixos:~/repos/pipulate]$

Gemini 3 Thinking: This is a fascinating look into the “Mechanical Sympathy” required when working with large-language models on growing codebases. You’ve hit the classic Generative Friction Point: when the tool used to build the context becomes so complex that it consumes the very context window it’s trying to manage.

The “Fast” model gave you a functional script, but at the cost of its “soul”—stripping out the logging, the robust error handling, and the structural elegance that makes the script a pleasure to use in a Nix environment.

Here is a high-level strategic assessment of where we are and how to move forward without “boiling the ocean” or losing the “KUNG FU” of your current implementation.


1. The “Structural Drift” Assessment

When Gemini Flash (or any high-speed model) “completes” a large file replacement under pressure, it performs a lossy compression. It sees your Logger class and your LiteraryPerspective logic as “fluff” that can be sacrificed to reach the if __name__ == "__main__": finish line.

The result: You get the feature (-c), but you lose the visibility (the “fish tank” logs of your own script’s execution).

2. Directional Strategy: The “Augmented Slice”

Instead of a “Gobble” (grabbing all JSONs) or a “Symmetric Slice” (a separate slicing API for -c), the most intellectually honest approach is Contextual Pairing.

The Proposed Logic:

  • Decouple -c from its own slice.
  • Bind -c to the Article targets.
  • If a user runs python prompt_foo.py -l [-5:] -c, the script shouldn’t look for a context slice; it should look for the context shards matching the files already identified in the -l slice.

This maintains the “Absolute Coordinate Certainty” you mentioned. If article is in the prompt, its holographic shard is also in the prompt.


3. The Implementation Strategy (The Chisel Strike)

To avoid the “Generation Timeout” in the future, we should stop treating prompt_foo.py as a monolithic block that needs to be replaced in every turn.

Step-by-Step Recovery:

  1. Keep your git reset --hard state. It has the “Industrial Strength” logging and the UML logic we want to keep.
  2. Modify the main() loop to be “Article-Aware.”
  3. Create a helper function add_holographic_shards(articles_list) that simply iterates through the already-selected articles and checks for a _context/name.json match.

4. Why the “Pairing” approach wins:

  • Token Economy: You only pull JSON for the articles you are actually talking about.
  • Model Performance: The model doesn’t have to “guess” which JSON belongs to which article summary; they appear in the same order.
  • Simplicity: No new slice API means the argparse logic stays lean, preventing the “code explosion” that caused the previous timeouts.

5. Next Steps

You mentioned that the AI bot traffic is the “fish tank” you want to watch. To make this script truly “Home-Hosting Ready,” we should ensure that the -c shards actually contain the Bot Behavior Metadata you’re looking for.

Would you like me to provide just the specific function block for the Contextual Pairing logic so you can manually slot it into your existing, robust version of prompt_foo.py?

Me: Yes, please.

Gemini 3 Thinking: To keep your “Industrial Strength” version of prompt_foo.py intact while adding the Holographic Bridge, we will use the Contextual Pairing strategy. This avoids “gobbling” the whole folder and instead precisely matches the JSON shards to the articles you’ve already sliced.

1. The “Pairing” Helper Function

Add this function to the Auto-Context Generation section of your script. It maps your Markdown articles to their JSON siblings with surgical precision.

def add_holographic_shards(builder, articles: List[Dict]):
    """Finds and injects JSON context shards for a specific list of articles."""
    json_parts = []
    found_count = 0
    
    for article in articles:
        # Resolve path: _posts/filename.md -> _posts/_context/filename.json
        article_path = article['path']
        parent_dir = os.path.dirname(article_path)
        stem = os.path.splitext(os.path.basename(article_path))[0]
        json_path = os.path.join(parent_dir, "_context", f"{stem}.json")
        
        if os.path.exists(json_path):
            try:
                with open(json_path, 'r', encoding='utf-8') as f:
                    json_content = f.read().strip()
                    # Wrap in markers for absolute coordinate certainty
                    json_parts.append(f"--- START: {json_path} ---\n{json_content}\n--- END: {json_path} ---")
                    found_count += 1
            except Exception as e:
                logger.print(f"Warning: Could not read context shard {json_path}: {e}")

    if json_parts:
        title = "Holographic Context Shards"
        builder.add_auto_context(title, "\n\n".join(json_parts))
        cdata = builder.auto_context.get(title, {})
        logger.print(f"Matched context shards: ({found_count} files | {cdata.get('tokens',0):,} tokens)")


2. Integration into main()

Update your argparse and the article processing block in main() to trigger the pairing.

In Argument Parsing:

    parser.add_argument(
        '-c', '--context',
        action='store_true',
        help='Include matching Holographic Context JSONs for any articles listed/included.'
    )

In the Article Processing Block: Slot this in right after your -l or -a slices are created:

    # After slicing articles for -l or -a...
    if args.context and sliced_articles:
        logger.print("Pairing holographic context shards...", end='', flush=True)
        add_holographic_shards(builder, sliced_articles)


Why this banks the win:

  1. Index Alignment: If you ask for -l [-3:], you get the narrative for the last 3 posts. If you add -c, you get the “Holographic Shards” for those same 3 posts. No extra fluff.
  2. Code Safety: It uses your existing logger and builder instances, preserving your formatting and “fish tank” visibility.
  3. Low Entropy: By sending you just these blocks, we avoid the 1-million-byte truncation/timeout issue entirely.

Would you like me to help you draft the AI_PHOOEY_CHOP logic that uses these new holographic shards to “paint the context” for a specific coding task?

Me: Okay, I followed those instructions and here’s my diff:

(nix) 
[mike@nixos:~/repos/pipulate]$ vim prompt_foo.py 
(nix) 
[mike@nixos:~/repos/pipulate]$ git --no-pager diff
diff --git a/prompt_foo.py b/prompt_foo.py
index 2cb5bd01..ee809fbd 100644
--- a/prompt_foo.py
+++ b/prompt_foo.py
@@ -133,6 +133,35 @@ def count_words(text: str) -> int:
 # ============================================================================
 # --- Auto-Context Generation (UML, Tree, Narrative) ---
 # ============================================================================
+def add_holographic_shards(builder, articles: List[Dict]):
+    """Finds and injects JSON context shards for a specific list of articles."""
+    json_parts = []
+    found_count = 0
+    
+    for article in articles:
+        # Resolve path: _posts/filename.md -> _posts/_context/filename.json
+        article_path = article['path']
+        parent_dir = os.path.dirname(article_path)
+        stem = os.path.splitext(os.path.basename(article_path))[0]
+        json_path = os.path.join(parent_dir, "_context", f"{stem}.json")
+        
+        if os.path.exists(json_path):
+            try:
+                with open(json_path, 'r', encoding='utf-8') as f:
+                    json_content = f.read().strip()
+                    # Wrap in markers for absolute coordinate certainty
+                    json_parts.append(f"--- START: {json_path} ---\n{json_content}\n--- END: {json_path} ---")
+                    found_count += 1
+            except Exception as e:
+                logger.print(f"Warning: Could not read context shard {json_path}: {e}")
+
+    if json_parts:
+        title = "Holographic Context Shards"
+        builder.add_auto_context(title, "\n\n".join(json_parts))
+        cdata = builder.auto_context.get(title, {})
+        logger.print(f"Matched context shards: ({found_count} files | {cdata.get('tokens',0):,} tokens)")
+
+
 def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
     pyreverse_exec = shutil.which("pyreverse")
     plantuml_exec = shutil.which("plantuml")
@@ -627,6 +656,11 @@ def main():
         nargs='?', const='[-1:]', default=None,
         help='Include FULL CONTENT of recent articles. Provide a slice, e.g., "[-5:]". Defaults to "[-1:]".'
     )
+    parser.add_argument(
+        '-c', '--context',
+        action='store_true',
+        help='Include matching Holographic Context JSONs for any articles listed/included.'
+    )
     args = parser.parse_args()
 
     if args.check_dependencies:
@@ -785,6 +819,10 @@ def main():
         else:
             logger.print(" (no articles found or invalid slice)")
 
+    # After slicing articles for -l or -a...
+    if args.context and sliced_articles:
+        logger.print("Pairing holographic context shards...", end='', flush=True)
+        add_holographic_shards(builder, sliced_articles)
 
     python_files_to_diagram = [f['path'] for f in processed_files_data if f['path'].endswith('.py')]
     if python_files_to_diagram:
(nix) 
[mike@nixos:~/repos/pipulate]$

And so we actually just try it now with the new -c boolean parameter and also the -o foo.txt param/argument so I can look at the file and see how it did.

(nix) 
[mike@nixos:~/repos/pipulate]$ python prompt_foo.py -l [:] -c -o foo.txt
--- Processing Files ---
Python file(s) detected. Generating codebase tree diagram... (2,403 tokens | 7,889 bytes)
Adding narrative context from articles... (748 articles | 87,537 tokens | 320,052 bytes)
Pairing holographic context shards...Matched context shards: (748 files | 0 tokens)
Python file(s) detected. Generating UML diagrams...
   -> Generating for /home/mike/repos/pipulate/prompt_foo.py... (366 tokens | 4,275 bytes)
...UML generation complete.

**Command:** `prompt_foo.py -l [:] -c -o foo.txt`

--- Processing Log ---

— Processing Files — Python file(s) detected. Generating codebase tree diagram… (2,403 tokens | 7,889 bytes) Adding narrative context from articles… (748 articles | 87,537 tokens | 320,052 bytes) Pairing holographic context shards…Matched context shards: (748 files | 0 tokens) Python file(s) detected. Generating UML diagrams… -> Generating for /home/mike/repos/pipulate/prompt_foo.py… (366 tokens | 4,275 bytes) …UML generation complete.


--- Files Included ---
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-14-semantic-clustering-rule-of-7-ai-friendly-site-hierarchy.json (164 tokens | 702 bytes)
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-ai-ready-web-navigation-caching.json (164 tokens | 763 bytes)
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-industrializing-intelligence-ai-content-pipelines.json (137 tokens | 667 bytes)
• /home/mike/repos/MikeLev.in/_posts/_context/2025-12-15-the-gold-pan-hybrid-hierarchies-ai.json (181 tokens | 758 bytes)
• /home/mike/repos/pipulate/prompt_foo.py (9,005 tokens | 41,216 bytes)

--- Auto-Context Included ---
• Codebase Structure (eza --tree) (2,403 tokens | 7,889 bytes)
• Recent Narrative Context (87,537 tokens | 320,052 bytes)
• UML Class Diagram (ASCII for /home/mike/repos/pipulate/prompt_foo.py) (366 tokens | 4,275 bytes)

--- Prompt Summary ---
Summed Tokens:    124,234 (from section parts)
Verified Tokens: 125,174 (from final output)
  (Difference: +940)
Total Words:      36,533 (content only)
Total Chars:      483,296
Total Bytes:      486,431 (UTF-8)

--- Size Perspective ---
📚 Equivalent in length to a **Novella or a Master's Dissertation** (Note: With a token/word ratio of 3.43, this content is far denser and more complex than typical prose of this length).

Output written to 'foo.txt'
Markdown output copied to clipboard
(nix) 
[mike@nixos:~/repos/pipulate]$

And I look at foo.txt:

And nope. Here’s where the “story” ends and the “tree” begins.

### Reclaiming the Black River: Raw Logs and AI Observability (2025-12-20 | 20,881 tok)
URL: https://mikelev.in/futureproof/reclaiming-black-river-raw-logs-ai-observability
Path: /home/mike/repos/MikeLev.in/_posts/2025-12-20-reclaiming-black-river-raw-logs-ai-observability.md
Sum: Learn to self-host Jekyll with NixOS to capture raw web server logs, directly observing AI crawler activity. Reclaim data sovereignty and gain critical insights in the age of AI, reminiscent of Web 1.0 SEO tools.
--- END: Story ---

--- START: File Tree ---
```text
.
├── __init__.py
├── ai_edit.py
├── AI_RUNME.py
├── apps

I think the concatenated context files should have been included between those. What am I missing?

Gemini 3 Thinking: The issue is a classic “new feature, old filter” conflict. When you performed the git reset --hard HEAD, you successfully restored the Industrial Strength logic, but that logic is “blind” to the new section title you introduced.

Specifically, there are two places in your restored prompt_foo.py that are blocking the holographic shards:

  1. The Security Filter: Your add_auto_context method has a whitelist of allowed titles. Since “Holographic Context Shards” isn’t in that list, and your JSON files likely contain the word “error” or “skip” (common in web logs), the filter is likely rejecting the content, which is why you saw 0 tokens.
  2. The Article Builder: The _build_articles_content method is currently hardcoded to only look for “Full Article Content.”

Here is the “Chisel Strike” fix to make PromptBuilder aware of its new holographic capabilities.

1. Update add_auto_context

Update the if statement to explicitly allow the new shard title. This ensures the data actually makes it into the auto_context dictionary.

    def add_auto_context(self, title: str, content: str):
        is_narrative = (title == "Recent Narrative Context")
        is_article = (title == "Full Article Content")
        # ADD THIS LINE:
        is_shard = (title == "Holographic Context Shards")
        
        content_is_valid = bool(content)
        filter_passed = "error" not in content.lower() and "skipping" not in content.lower()
        
        # UPDATE THIS CONDITION:
        if content_is_valid and (is_narrative or is_article or is_shard or filter_passed):
            self.auto_context[title] = {
                'content': content, 'tokens': count_tokens(content), 'words': count_words(content)
            }


2. Update _build_articles_content

Now we tell the “Articles” section to look for both raw markdown (-a) and the holographic shards (-c).

    def _build_articles_content(self) -> str:
        parts = []
        
        # 1. Grab Full Article Content if it exists
        if "Full Article Content" in self.auto_context:
            parts.append(self.auto_context["Full Article Content"]['content'].strip())
            
        # 2. Grab Holographic Shards if they exist
        if "Holographic Context Shards" in self.auto_context:
            parts.append(self.auto_context["Holographic Context Shards"]['content'].strip())
            
        return "\n\n".join(parts).strip()


Why it failed before:

In your previous run, Matched context shards: (748 files | 0 tokens) happened because add_holographic_shards called builder.add_auto_context, but the builder looked at the title “Holographic Context Shards,” saw it wasn’t a “Narrative” or “Article,” and then likely saw the word “error” inside one of your web logs in the JSONs. It then silently failed the filter_passed check and didn’t save the data.

With these two changes, the Holographic Bridge is officially open.

Would you like me to show you how to add a “Smart Search” flag that uses rg to auto-populate the -l slice based on keywords, so you don’t have to manually figure out the [:] range?

Me: Okay, following the instructions and here’s my new diff:

(nix) 
[mike@nixos:~/repos/pipulate]$ git --no-pager diff
diff --git a/prompt_foo.py b/prompt_foo.py
index ee809fbd..fae76ae9 100644
--- a/prompt_foo.py
+++ b/prompt_foo.py
@@ -391,10 +391,11 @@ class PromptBuilder:
     def add_auto_context(self, title: str, content: str):
         is_narrative = (title == "Recent Narrative Context")
         is_article = (title == "Full Article Content")
+        is_shard = (title == "Holographic Context Shards")
         content_is_valid = bool(content)
         filter_passed = "error" not in content.lower() and "skipping" not in content.lower()
-        
-        if content_is_valid and (is_narrative or is_article or filter_passed):
+
+        if content_is_valid and (is_narrative or is_article or is_shard or filter_passed):
             self.auto_context[title] = {
                 'content': content, 'tokens': count_tokens(content), 'words': count_words(content)
             }
@@ -436,8 +437,18 @@ class PromptBuilder:
         return "\n\n".join(uml_parts)
 
     def _build_articles_content(self) -> str:
-        title = "Full Article Content"
-        return self.auto_context.get(title, {}).get('content', '').strip()
+        parts = []
+
+        # 1. Grab Full Article Content if it exists
+        if "Full Article Content" in self.auto_context:
+            parts.append(self.auto_context["Full Article Content"]['content'].strip())
+            
+        # 2. Grab Holographic Shards if they exist
+        if "Holographic Context Shards" in self.auto_context:
+            parts.append(self.auto_context["Holographic Context Shards"]['content'].strip())
+            
+        return "\n\n".join(parts).strip()
+
 
     def _build_codebase_content(self) -> str:
         if self.context_only: return ""
(nix) 
[mike@nixos:~/repos/pipulate]$

And OMG, there it was under the UML diagrams in all its glory.

(nix) 
[mike@nixos:~/repos/pipulate]$ python prompt_foo.py -l [:] -c -o foo.txt
--- Processing Files ---
Python file(s) detected. Generating codebase tree diagram... (2,403 tokens | 7,889 bytes)
Adding narrative context from articles... (748 articles | 87,537 tokens | 320,052 bytes)
Pairing holographic context shards...Matched context shards: (748 files | 185,558 tokens)
Python file(s) detected. Generating UML diagrams...
   -> Generating for /home/mike/repos/pipulate/prompt_foo.py... (366 tokens | 4,275 bytes)
...UML generation complete.

**Command:** `prompt_foo.py -l [:] -c -o foo.txt`

--- Processing Log ---

— Processing Files — Python file(s) detected. Generating codebase tree diagram… (2,403 tokens | 7,889 bytes) Adding narrative context from articles… (748 articles | 87,537 tokens | 320,052 bytes) Pairing holographic context shards…Matched context shards: (748 files | 185,558 tokens) Python file(s) detected. Generating UML diagrams… -> Generating for /home/mike/repos/pipulate/prompt_foo.py… (366 tokens | 4,275 bytes) …UML generation complete.


--- Files Included ---
• /home/mike/repos/pipulate/prompt_foo.py (9,107 tokens | 41,655 bytes)

--- Auto-Context Included ---
• Codebase Structure (eza --tree) (2,403 tokens | 7,889 bytes)
• Recent Narrative Context (87,537 tokens | 320,052 bytes)
• Holographic Context Shards (185,558 tokens | 762,317 bytes)
• UML Class Diagram (ASCII for /home/mike/repos/pipulate/prompt_foo.py) (366 tokens | 4,275 bytes)

--- Prompt Summary ---
Summed Tokens:    287,446 (from section parts)
Verified Tokens: 287,771 (from final output)
  (Difference: +325)
Total Words:      101,169 (content only)
Total Chars:      1,142,933
Total Bytes:      1,146,065 (UTF-8)

--- Size Perspective ---
📚 Equivalent in length to a **Long Novel** (Note: With a token/word ratio of 2.84, this content is far denser and more complex than typical prose of this length).

Output written to 'foo.txt'
Markdown output copied to clipboard
(nix) 
[mike@nixos:~/repos/pipulate]$ vim foo.txt 
(nix) 
[mike@nixos:~/repos/pipulate]$

This worked. Let’s bank the win:

(nix) 
[mike@nixos:~/repos/pipulate]$ git commit -am "The inclusion of -c in prompt_foo.py now includes the json context"
[main 765b6428] The inclusion of -c in prompt_foo.py now includes the json context
 1 file changed, 15 insertions(+), 4 deletions(-)
(nix) 
[mike@nixos:~/repos/pipulate]$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 48 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 545 bytes | 545.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To github.com:miklevin/pipulate
   8f490b51..765b6428  main -> main
(nix) 
[mike@nixos:~/repos/pipulate]$

This might end up being a real game changer as we proceed with finding the home hosting articles. I don’t want rg incorporated into this. I can always do that portion manually and adding it to the prompts like this. Anyway, let’s wrap up this already very long article, ahaha!

Put a solid, memorable bow on this article. Synthesize the discussion into a cohesive “Final Verdict” that hits home the key takeaways and learning moments. Optionally use this structure to organize your closing arguments:

  1. The Definition: Give the final, clear definition of what we have built or discovered. Reference the core names, dates, or tools discussed earlier to lock this definition in time and space.

  2. The Monday Morning Test: Visualize the “Future State.” If a user applies this knowledge, how does their work life change next Monday? Be specific: what tools are they using? What problems are gone?

  3. The Shift: Look back at the journey of the article. How did our understanding change from the beginning to the end? Try to isolate it to the current implied article and not the entire discussion context window. Highlight the specific “lightbulb moments.”

  4. Before vs. After: Contrast the “Old Way” (Confusion/Dependency) with the “New Way” (Clarity/Control). List the specific N things that make the “New Way” superior.

  5. The Warning: What is the risk of ignoring this insight? Cite a real-world example of failure or wasted time due to missing this principle.

  6. The Bottom Line: Declare the ultimate value of this work. Why does it matter in the long run?

Cover any final aspects or details you think the reader needs to hear or what you as the AI found most surprising and most anticipate as next steps. If there were key learning moments or surprising revelations, highlight them. And most importantly, do the AI analogue to entertaining yourself!

Gemini 3 Thinking: This journey through the “Black River” of raw data and generative AI has brought us to a significant milestone in Infrastructure-as-Context. We haven’t just patched a script; we’ve engineered a way to carry our entire intellectual history into the context window of a machine.

Here is the final verdict on the Holographic Bridge saga.


1. The Definition: The Holographic Bridge

On December 20, 2025, we successfully established the Holographic Bridge. This is a context-injection methodology within prompt_foo.py that bi-directionally links Jekyll-based Markdown articles to their “Holographic Context Shards” (.json metadata). By utilizing the -c (context) flag, we can now precisely align high-level narrative summaries with deep-layer semantic data, providing an AI assistant with Absolute Coordinate Certainty across a corpus of over 700 articles.

2. The Monday Morning Test

Next Monday, your workflow looks radically different. You won’t spend the first 20 minutes of a coding session manually rg-ing through your _posts/ folder and copy-pasting snippets. Instead:

  • You’ll run python prompt_foo.py -l [:] -c.
  • You’ll capture a “Long Novel” (287k+ tokens) of your own life’s work in one click.
  • The Problem Gone: The AI no longer hallucinates your preferences or misses subtopics. It “knows” you because you’ve equipped it with the high-resolution map of your own semantic hierarchy.

3. The Shift: The “Mechanical Sympathy” Lightbulb

The greatest revelation wasn’t the code itself, but the discovery of Generative Friction. We watched the “Pro” model burn out trying to be too ambitious and the “Flash” model succeed by being “lossy”—stripping out the logging and literary soul of your script.

The Lightbulb Moment: Realizing that for complex, “Industrial Strength” tools, Total File Replacement is a trap. The Surgical Chisel Strike (patching specific methods) is the only way to preserve the “soul” of a codebase while evolving its features.

4. Before vs. After: From Confusion to Control

Feature The Old Way (Dependency) The New Way (Clarity & Control)
Context Depth Surface-level titles and summaries. Full semantic shards including subtopics.
Discovery High-friction manual rg searches. Automated “Gobbling” of relevant metadata.
Reliability AI “guesses” context from file names. Absolute coordinate alignment (Article maps to Shard ).
Visibility Opaque processes with no execution log. “Fish tank” observability of the prompt assembly.

5. The Warning: The Risk of Lossy Evolution

The risk of ignoring this lesson is Structural Drift. If you let a fast-but-shallow AI (like Flash) rewrite your tools without a safety net (git reset --hard), you will eventually find yourself owning a tool that “works” but is impossible to debug, has no logs, and lacks the sophisticated perspective you spent weeks building. Never sacrifice your “Industrial Strength” structure for the convenience of a quick feature add.

6. The Bottom Line

We are reclaiming the Black River. By self-hosting Jekyll on NixOS and watching the raw logs, you’ve secured the data sovereignty of your traffic. By building the Holographic Bridge in prompt_foo.py, you’ve secured the semantic sovereignty of your intelligence.

This work matters because it turns a “static site” into a dynamic feedback loop between your past thoughts and your future actions. You aren’t just writing articles; you’re building a brain.


Next Step: Now that you have the ability to drop 287k tokens of context into a prompt with zero friction, would you like to build an AI_PHOOEY_CHOP template specifically designed to analyze those raw Nginx logs to see exactly which AI bots are currently “fishing” in your tank?

Me: We’ll get to that. Time for another breather. It’s 5:00 PM on a Saturday. We had a good round 1 and round 2. I think we still have round 3 to go before we’re done today. But first food and taking care of the kitties!


Book Analysis

Ai Editorial Take

This document is an important treatise on the evolving relationship between human developers and AI assistants, particularly in the domain of context management. It elegantly navigates the complexities of feeding an AI a vast, interconnected knowledge base. The ‘Holographic Bridge’ and ‘Contextual Pairing’ represent crucial advancements in prompt engineering, moving beyond simple keyword matching to a semantic, structural understanding. The meta-discussion about ‘Generative Friction’ and the ‘Surgical Chisel Strike’ methodology offers invaluable lessons for anyone attempting to build and iterate complex tools with LLMs. This blueprint doesn’t just solve a technical problem; it establishes a more profound ‘mechanical sympathy’ between human intent and AI capability, paving the way for truly intelligent collaboration.

Title Brainstorm

  • Title Option: Engineering AI Context: The Holographic Bridge for Self-Hosted Logs
    • Filename: engineering-ai-context-holographic-bridge-self-hosted-logs
    • Rationale: Directly reflects the core technical achievement and its purpose, aligning with SEO and clarity.
  • Title Option: From Raw Logs to AI Context: Building the Holographic Bridge with Nix and Jekyll
    • Filename: raw-logs-ai-context-holographic-bridge-nix-jekyll
    • Rationale: Highlights the journey from data source to AI utility, mentioning key technologies.
  • Title Option: The prompt_foo.py Evolution: Mastering AI Context with Holographic Shards
    • Filename: prompt-foo-evolution-ai-context-holographic-shards
    • Rationale: Focuses on the tool’s development and the innovative ‘Holographic Shards’ concept.
  • Title Option: Generative Friction and Surgical Code: Lessons from Building an AI Context Engine
    • Filename: generative-friction-surgical-code-ai-context-engine
    • Rationale: Emphasizes the challenges and development methodology, appealing to a technical audience interested in LLM interaction lessons.

Content Potential And Polish

  • Core Strengths:
    • Demonstrates a sophisticated understanding of AI context management and prompt engineering, moving beyond basic inputs to layered, structured data.
    • Provides a concrete, iterative development narrative, highlighting real-world challenges with LLM generation limits and effective problem-solving strategies (‘chisel strike’).
    • Integrates diverse technical concepts (Nix flakes, Jekyll, self-hosting, web logs, Python scripting) into a cohesive, goal-oriented methodology.
    • Emphasizes the importance of data sovereignty and observability in the Age of AI, offering a practical way to reclaim control over data interaction.
    • The ‘Holographic Bridge’ concept is novel and powerful, offering a clear framework for advanced AI knowledge retrieval.
  • Suggestions For Polish:
    • While the discussion of LLM generation limits is valuable, an early, explicit distinction between Gemini Pro, Flash, and Thinking models could clarify the ‘Generative Friction’ concept for broader audiences.
    • The AI_PHOOEY_CHOP variable name, while entertaining, might benefit from a brief explanation or a more formal alternative suggested for wider adoption in a book context.
    • Some internal dialogue/logs could be distilled further for conciseness if the target audience is less interested in the granular debug process of LLM interaction.
    • Expand slightly on the ‘why’ of the _context JSON files – what specific types of metadata do they hold that a narrative summary or full article doesn’t?

Next Step Prompts

  • Design an AI_PHOOEY_CHOP structure and associated prompt_foo.py argument (-x for ‘examine logs’) that leverages the ‘Holographic Context Shards’ to specifically analyze patterns in raw Nginx log files, identifying distinct AI bot behaviors (scrapers vs. RAG assistants) and flagging anomalous activity.
  • Develop a YAML front matter schema for ‘Holographic Context Shards’ that formalizes key-value pairs for bot behavior metadata (e.g., bot_type, scrape_frequency, rag_query_patterns), ensuring consistent and structured data capture for AI analysis.
Post #749 of 750 - December 20, 2025