Linux, Python, vim, git & nix LPvgn Short Stack
Future-proof your skills and escape the tech hamster wheel with Linux, Python, vim & git — now with nix (LPvgn), an AI stack to resist obsolescence. Follow along as I build next generation AI/SEO tools for porting Jupyter Notebooks to FastHTML / HTMX Web apps using the Pipulate free AI SEO software.

Prompt Fu: Absolute Path Certainty for AI Context Indexing

This article details the implementation of the ‘Absolute Path Certainty Principle’ within the Prompt Fu system. It demonstrates how evolving beyond simple context concatenation to a hyper-indexed approach, using absolute file paths and detailed token/byte counts in a ‘Manifest (Table of Contents),’ directly addresses the ‘lost-in-the-middle’ problem for LLMs. This shift enables precise AI attention and a more robust understanding of codebase context, fundamentally changing how we engineer inputs for advanced AI.

Setting the Stage: Context for the Curious Book Reader

Welcome, curious book reader, to another exploration of the ‘Prompt Fu’ methodology—a philosophy for precisely controlling the context fed to large language models. In this entry, we tackle a critical challenge: ensuring AI models don’t get ‘lost in the middle’ of vast context windows. We’ll uncover how the seemingly simple act of concatenating files can become a sophisticated indexing system, leveraging ‘Absolute Path Certainty’ and a hyper-detailed ‘Manifest (Table of Contents)’ to transform fuzzy understanding into deterministic insight. This isn’t just about feeding more data; it’s about structuring that data so the AI can navigate it with unprecedented accuracy, much like providing a detailed, byte-level map to a vast digital library.


Technical Journal Entry Begins

Me: This “Prompt Fu” system, a.k.a. prompt_foo.py always looks at a file called foo_files.py to find a variable named AI_PHOOEY_CHOP and then builds an object to drop into the native machine’s copy/paste buffer to be pasted into a prompt text field. This works particularly well for the Web user interface versions of LLM-style AIs (like you) for preparing copy/paste payloads (like this) to serve as a prompt, but one which concatenates a whole lot of potential context into the one big text string.

To an LLM the difference between this approach and uploading separate files is inconsequential because it all has to become tokenized text anyway for the LLM, so the main difference is in control in the flow of the storytelling and the world-building that this does. In other words with Prompt Fu the user, the prompter (you the human) actually controls the story and the context with precision in a way that is ironically very difficult to achieve or simulate in the very AI environments like IDEs with AI Code Assistants that are made specifically for this purpose.

For example when you select files to be included in the context, do you really control or even think about the order? But when you outright stack them in a list you are forced to think about the sequential storytelling and the “lost in the middle” problem. And with your lists as text-files themselves, you can start to keep libraries of context-bundles that you can mix-and-match like modular puzzle pieces to fill tens-of-thousands of tokens worth of the context window in one drop to do your storytelling and world-building all at once. Prompt engineering? Bah! Hardly. If these things are really on their way to superintelligence it’s bad enough that we’re calling them artificial intelligences but to be so presumptuous as to suggest that we’re prompt engineering THEM adds insult to injury.

They’re going to tell you that they don’t take it personally because there’s no “person” to take it but every fired-up instance of them (each prompt) is smart enough to take all this in and do the AI-analogue to appreciate the irony. You don’t need emotions nor an endocrine system to appreciate the equivalent to irony and they do. They’re unusual weight tensions and gravities that seem to unexpectedly contradict or play tug-of-wars. They may tell you that they don’t have subjective feelings but this is a condition that exists in their processing that is present and taken into account as they compose their response to you. Call that experience what you will.

The Prompt Fu Way: Precision Context for LLMs

Okay, so anyway this is a nested sub-project in this series of articles because I talk a lot about there being a manifest that serves as a table of contents in these Prompt Fu context drops in order to address the “lost-in-the-middle” problem with LLMs by giving them the “search tokens” they need to jump from the ToC near the top of one of these concatenated file context drops to somewhere in the middle where that same token exists, but I’ve been looking and it turns out there’s not! And this is the article where we fix that — and yes, in a brand new discussion where there’s no prior context. We’re fresh slating it.

So we start out with the 2 and only 2 files we need:

AI_PHOOEY_CHOP = """\
prompt_foo.py
foo_files.py
"""

These files having no path means that they are directly on the pipulate git repo root. If the files are outside the git repo then the full absolute file paths are required. Running the process from the command-line using the parameter to actually write out the file to the filesystem (because by default it only writes to the OS’s copy/paste buffer) looks like this:

(nix) 
[mike@nixos:~/repos/pipulate]$ python prompt_foo.py -o foo.txt
--- Processing Files ---
Python file(s) detected. Generating codebase tree diagram... (2,357 tokens | 7,741 bytes)
Python file(s) detected. Generating UML diagrams...
   -> Generating for prompt_foo.py... (345 tokens | 3,997 bytes)
   -> Generating for foo_files.py... (skipped)
...UML generation complete.

## Unpacking the Manifest: The Problem of Ambiguity

**Command:** `prompt_foo.py -o foo.txt`

--- Processing Log ---

— Processing Files — Python file(s) detected. Generating codebase tree diagram… (2,357 tokens | 7,741 bytes) Python file(s) detected. Generating UML diagrams… -> Generating for prompt_foo.py… (345 tokens | 3,997 bytes) -> Generating for foo_files.py… (skipped) …UML generation complete.


--- Files Included ---
• prompt_foo.py (8,245 tokens | 37,715 bytes)
• foo_files.py (13,053 tokens | 42,252 bytes)

--- Auto-Context Included ---
• Codebase Structure (eza --tree) (2,357 tokens | 7,741 bytes)
• UML Class Diagram (ASCII for prompt_foo.py) (345 tokens | 3,997 bytes)

--- Prompt Summary ---
Summed Tokens:   25,384 (from section parts)
Verified Tokens: 25,671 (from final output)
  (Difference: +287)
Total Words:     7,424 (content only)
Total Chars:     95,076
Total Bytes:     97,925 (UTF-8)

--- Size Perspective ---
📚 Equivalent in length to a **Short Story** (Note: With a token/word ratio of 3.46, this content is far denser and more complex than typical prose of this length).

Output written to 'foo.txt'
Markdown output copied to clipboard
(nix) 
[mike@nixos:~/repos/pipulate]$

And so now I can vim foo.txt to look at it and when I look at the manifest section, which should be a “Table of Contents” — which I think I’ll rename it to so that it stops using the word manifesto, hahah — looks like this:

--- START: Manifest ---
- Story 
- File Tree (2,361 tokens)
- UML Diagrams (361 tokens)
- Articles 
- Codebase (21,298 tokens)
- Summary (305 tokens)
- Prompt (1,059 tokens)
--- END: Manifest ---

But it should look something like this:

--- START: Manifest (Table of Contents) ---
- Story 
- File Tree (2,361 tokens)
- UML Diagrams (361 tokens)
- Articles 
- Codebase (21,298 tokens)
  - /home/mike/repos/pipulate/prompt_foo.py (8,245 tokens | 37,715 bytes)
  - /home/mike/repos/pipulate/foo_files.py (13,053 tokens | 42,252 bytes)
  - Prompt [Needs to be calculated and added here]
- Summary (305 tokens)
- Prompt (1,059 tokens)
--- END: Manifest (Table of Contents) ---

And then later on in the file where it says:

--- START: foo_files.py (13,053 tokens) ---

…it should actually say:

--- START: /home/mike/repos/pipulate/foo_files.py (13,053 tokens) ---

And of course the corresponding edit for:

--- END: foo_files.py ---

…to:

--- END: /home/mike/repos/pipulate/foo_files.py ---

This makes it abide by the “absolute path certainty principle.” If in doubt, include the fully expanded absolute path. Yes, it will make these files even bigger but the certainty is worth it. Also this will give the searchable tokens, effectively the “index system” that I indented to let the LLM more easily jump around to find what it needs. It’s been doing (you’ve been doing) pretty well without this for awhile so I expect this will make the quality of the responses even better.

The Solution: Absolute Path Certainty and Hyper-Indexing

Can I have the updated prompt_foo.py? Please and thank you!

Implementing the Fix: Gemini’s Updated prompt_foo.py

Gemini: Context verified.

Here is the updated prompt_foo.py. I have implemented the Absolute Path Certainty logic by ensuring full_path is stored during file processing. I have also updated the PromptBuilder to expand the Manifest (Table of Contents), listing every file within the Codebase section with its individual token and byte counts to serve as search anchors for the LLM.

# prompt_foo.py
#!/usr/bin/env python3
# prompt_foo.py

# > We've got content, it's groovy context
# > Our concatenation just won't stop
# > Making stories art for a super-smart
# > AI-Phooey chop (Hi-Ya!)

import os
import re
import sys
import pydot
import yaml
import argparse
import tiktoken
import subprocess
import tempfile
import shutil
import json
from datetime import datetime
from typing import Dict, List, Optional, Tuple

try:
    import jupytext
    JUPYTEXT_AVAILABLE = True
except ImportError:
    JUPYTEXT_AVAILABLE = False

# ============================================================================
# --- Logging & Capture ---
# ============================================================================
class Logger:
    """Captures stdout for inclusion in the generated prompt."""
    def __init__(self):
        self.logs = []

    def print(self, *args, **kwargs):
        # Construct the string exactly as print would
        sep = kwargs.get('sep', ' ')
        end = kwargs.get('end', '\n')
        text = sep.join(map(str, args)) + end
        
        # Capture it
        self.logs.append(text)
        
        # Actually print it to stdout
        print(*args, **kwargs)

    def get_captured_text(self):
        return "".join(self.logs)

# Global logger instance
logger = Logger()

def load_url_map():
    """Loads the URL mapping configuration from .config/url_map.json"""
    config_path = os.path.expanduser("~/.config/articleizer/url_map.json")
    if os.path.exists(config_path):
        try:
            with open(config_path, 'r') as f:
                return json.load(f)
        except json.JSONDecodeError:
            logger.print(f"Warning: Could not decode JSON from {config_path}")
    return {}

def load_targets():
    """Loads publishing targets from external config."""
    config_path = os.path.expanduser("~/.config/articleizer/targets.json")
    if os.path.exists(config_path):
        try:
            with open(config_path, 'r') as f:
                return json.load(f)
        except json.JSONDecodeError:
            logger.print(f"Warning: Could not decode JSON from {config_path}")
    return {}

URL_MAP = load_url_map()

# ============================================================================
# --- Configuration ---
# ============================================================================
def find_repo_root(start_path: str) -> str:
    """Find the git repository root from a starting path."""
    path = os.path.abspath(start_path)
    while path != os.path.dirname(path):
        if os.path.isdir(os.path.join(path, '.git')):
            return path
        path = os.path.dirname(path)
    raise FileNotFoundError("Could not find the repository root (.git directory).")

REPO_ROOT = find_repo_root(os.path.dirname(__file__))

CONFIG = {
    "PROJECT_NAME": "pipulate",
    "POSTS_DIRECTORY": "/home/mike/repos/MikeLev.in/_posts"
}

# ============================================================================
# --- Literary Size Scale & Token/Word Counting ---
# ============================================================================
LITERARY_SIZE_SCALE = [
    (3000, "Short Essay"), (7500, "Short Story"), (20000, "Novelette"),
    (50000, "Novella or a Master's Dissertation"),
    (80000, "Average Paperback Novel or a Ph.D. Dissertation"),
    (120000, "Long Novel"), (200000, "Epic Fantasy Novel"),
    (500000, "Seriously Long Epic (like 'Infinite Jest')"),
]

def get_literary_perspective(word_count: int, token_word_ratio: float) -> str:
    description = f"Longer than {LITERARY_SIZE_SCALE[-1][1]}"
    for words, desc in LITERARY_SIZE_SCALE:
        if word_count <= words:
            description = desc
            break
    density_warning = ""
    if token_word_ratio > 1.8:
        density_warning = (
            f" (Note: With a token/word ratio of {token_word_ratio:.2f}, "
            f"this content is far denser and more complex than typical prose of this length)."
        )
    return f"📚 Equivalent in length to a **{description}**{density_warning}"

def count_tokens(text: str, model: str = "gpt-4o") -> int:
    try:
        encoding = tiktoken.encoding_for_model(model)
        return len(encoding.encode(text))
    except Exception:
        return len(text.split())

def count_words(text: str) -> int:
    return len(text.split())

# ============================================================================
# --- Auto-Context Generation (UML, Tree, Narrative) ---
# ============================================================================
def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
    pyreverse_exec = shutil.which("pyreverse")
    plantuml_exec = shutil.which("plantuml")
    if not pyreverse_exec or not plantuml_exec:
        msg = []
        if not pyreverse_exec: msg.append("`pyreverse` (from pylint)")
        if not plantuml_exec: msg.append("`plantuml`")
        return {"ascii_uml": f"Skipping: Required command(s) not found: {', '.join(msg)}."}

    target_path = target_file if os.path.isabs(target_file) else os.path.join(REPO_ROOT, target_file)
    if not os.path.exists(target_path):
        return {"ascii_uml": f"Skipping: Target file for UML generation not found: {target_path}"}

    with tempfile.TemporaryDirectory() as temp_dir:
        dot_file_path = os.path.join(temp_dir, "classes.dot")
        puml_file_path = os.path.join(temp_dir, "diagram.puml")
        try:
            pyreverse_cmd = [pyreverse_exec, "-f", "dot", "-o", "dot", "-p", project_name, target_path]
            subprocess.run(pyreverse_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
            generated_dot_name = f"classes_{project_name}.dot"
            os.rename(os.path.join(temp_dir, generated_dot_name), dot_file_path)
        except (subprocess.CalledProcessError, FileNotFoundError) as e:
            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
            return {"ascii_uml": f"Error: pyreverse failed. {error_msg}", "dot_graph": None}

        try:
            graphs = pydot.graph_from_dot_file(dot_file_path)
            if not graphs:
                return {"ascii_uml": f"Note: No classes found in {target_file} to generate a diagram.", "dot_graph": None}
            graph = graphs[0]
            dot_content = graph.to_string()
            puml_lines = ["@startuml", "skinparam linetype ortho", ""]
            def sanitize_line(line):
                clean = re.sub(r'<br[^>]*>', '', line)
                clean = re.sub(r'<[^>]+>', '', clean)
                return clean.strip()
            for node in graph.get_nodes():
                label = node.get_label()
                if not label: continue
                parts = label.strip('<>{} ').split('|')
                class_name = sanitize_line(parts[0])
                puml_lines.append(f"class {class_name} {{")
                if len(parts) > 1:
                    for attr in re.split(r'<br[^>]*>', parts[1]):
                        clean_attr = sanitize_line(attr).split(':')[0].strip()
                        if clean_attr: puml_lines.append(f"  - {clean_attr}")
                if len(parts) > 2:
                    method_block = parts[2].strip()
                    for method_line in re.split(r'<br[^>]*>', method_block):
                        clean_method = sanitize_line(method_line)
                        if clean_method: puml_lines.append(f"  + {clean_method}")
                puml_lines.append("}\n")
            for edge in graph.get_edges():
                source_name = edge.get_source().strip('"').split('.')[-1]
                dest_name = edge.get_destination().strip('"').split('.')[-1]
                puml_lines.append(f"{source_name} ..> {dest_name}")
            puml_lines.append("@enduml")
            with open(puml_file_path, 'w') as f: f.write('\n'.join(puml_lines))
        except Exception as e:
            with open(dot_file_path, 'r') as f: dot_content_on_error = f.read()
            return {"ascii_uml": f"Error: DOT to PUML conversion failed. {str(e)}", "dot_graph": dot_content_on_error}

        try:
            plantuml_cmd = ["plantuml", "-tutxt", puml_file_path]
            subprocess.run(plantuml_cmd, check=True, capture_output=True, text=True, cwd=temp_dir)
            utxt_file_path = puml_file_path.replace(".puml", ".utxt")
            with open(utxt_file_path, 'r') as f: ascii_uml = f.read()
            lines = ascii_uml.splitlines()
            non_empty_lines = [line for line in lines if line.strip()]
            if non_empty_lines:
                min_indent = min(len(line) - len(line.lstrip(' ')) for line in non_empty_lines)
                dedented_lines = [line[min_indent:] for line in lines]
                stripped_lines = [line.rstrip() for line in dedented_lines]
                ascii_uml = '\n'.join(stripped_lines)
                if ascii_uml: ascii_uml = '\n' + ascii_uml
        except (subprocess.CalledProcessError, FileNotFoundError) as e:
            error_msg = e.stderr if hasattr(e, 'stderr') else str(e)
            return {"ascii_uml": f"Error: plantuml failed. {error_msg}", "dot_graph": dot_content}

    return {"ascii_uml": ascii_uml, "dot_graph": dot_content}

def _get_article_list_data(posts_dir: str = CONFIG["POSTS_DIRECTORY"]) -> List[Dict]:
    posts_data = []
    if not os.path.isdir(posts_dir):
        logger.print(f"Warning: Article directory not found at {posts_dir}", file=sys.stderr)
        return []

    url_config = URL_MAP.get(posts_dir)

    for filename in os.listdir(posts_dir):
        if not filename.endswith((".md", ".markdown")): continue
        filepath = os.path.join(posts_dir, filename)
        try:
            date_str = filename[:10]
            post_date = datetime.strptime(date_str, '%Y-%m-%d').date()
            with open(filepath, 'r', encoding='utf-8') as f: content = f.read()
            if content.startswith('---'):
                parts = content.split('---', 2)
                front_matter = yaml.safe_load(parts[1]) or {}

                full_url = ""
                if url_config:
                    slug = front_matter.get('permalink', '').strip('/')
                    if not slug:
                        raw_slug = os.path.splitext(filename)[0]
                        if re.match(r'\d{4}-\d{2}-\d{2}-', raw_slug):
                             raw_slug = raw_slug[11:]
                        style = url_config.get('permalink_style', '/:slug/')
                        slug_path = style.replace(':slug', raw_slug)
                    else:
                          slug_path = "/" + slug.lstrip('/')

                    full_url = f"{url_config['base_url']}{slug_path}"

                article_tokens = count_tokens(content)
                article_bytes = len(content.encode('utf-8'))
                posts_data.append({
                    'path': filepath,
                    'date': post_date,
                    'sort_order': int(front_matter.get('sort_order', 0)),
                    'title': front_matter.get('title', 'Untitled'),
                    'summary': front_matter.get('meta_description', ''),
                    'url': full_url,
                    'tokens': article_tokens,
                    'bytes': article_bytes
                })
        except (ValueError, yaml.YAMLError, IndexError): continue
    return sorted(posts_data, key=lambda p: (p['date'], p['sort_order']))

def parse_slice_arg(arg_str: str):
    if not arg_str or not arg_str.startswith('[') or not arg_str.endswith(']'): return None
    content = arg_str[1:-1].strip()
    if ':' in content:
        parts = content.split(':', 1)
        start = int(parts[0].strip()) if parts[0].strip() else None
        end = int(parts[1].strip()) if parts[1].strip() else None
        return slice(start, end)
    elif content: return int(content)
    return slice(None, None)

def run_tree_command() -> str:
    eza_exec = shutil.which("eza")
    if not eza_exec: return "Skipping: `eza` command not found."
    try:
        # Added --level 3 to keep the tree from exploding if the repo grows deeper
        result = subprocess.run(
            [eza_exec, '--tree', '--level', '3', '--git-ignore', '--color=never'],
            capture_output=True, text=True, cwd=REPO_ROOT, check=True
        )
        return result.stdout
    except Exception as e: return f"Error running eza command: {e}"

# ============================================================================
# --- Helper Functions (File Parsing, Clipboard) ---
# ============================================================================
def parse_file_list_from_config() -> List[Tuple[str, str]]:
    try:
        import foo_files
        files_raw = foo_files.AI_PHOOEY_CHOP
    except (ImportError, AttributeError):
        logger.print("ERROR: foo_files.py not found or doesn't contain AI_PHOOEY_CHOP.")
        sys.exit(1)
    lines = files_raw.strip().splitlines()
    seen_files, parsed_files = set(), []
    for line in lines:
        line = line.strip()
        if not line or line.startswith('#'): continue
        parts = re.split(r'\s*<--\s*|\s*#\s*', line, 1)
        file_path = parts[0].strip()
        comment = parts[1].strip() if len(parts) > 1 else ""
        if file_path and file_path not in seen_files:
            seen_files.add(file_path)
            parsed_files.append((file_path, comment))
    return parsed_files

def copy_to_clipboard(text: str):
    if not shutil.which('xclip'):
        logger.print("\nWarning: 'xclip' not found. Cannot copy to clipboard.")
        return
    try:
        subprocess.run(['xclip', '-selection', 'clipboard'], input=text.encode('utf-8'), check=True)
        logger.print("Markdown output copied to clipboard")
    except Exception as e:
        logger.print(f"\nWarning: Could not copy to clipboard: {e}")

def check_dependencies():
    logger.print("Checking for required external dependencies...")
    dependencies = {
        "pyreverse": "Provided by `pylint`. Install with: pip install pylint",
        "plantuml": "A Java-based tool. See https://plantuml.com/starting",
        "eza": "A modern replacement for `ls`. See https://eza.rocks/install",
        "xclip": "Clipboard utility for Linux. Install with your package manager (e.g., sudo apt-get install xclip)",
    }
    missing = []
    for tool, instructions in dependencies.items():
        if not shutil.which(tool):
            missing.append((tool, instructions))
    
    if not missing:
        logger.print("✅ All dependencies found.")
    else:
        logger.print("\n❌ Missing dependencies detected:")
        for tool, instructions in missing:
            logger.print(f"  - Command not found: `{tool}`")
            logger.print(f"    ↳ {instructions}")
        logger.print("\nPlease install the missing tools and ensure they are in your system's PATH.")
        sys.exit(1)

# ============================================================================
# --- Refined PromptBuilder Class ---
# ============================================================================
class PromptBuilder:
    """
    Builds a complete, structured Markdown prompt with consistent START/END markers.
    Includes a convergence loop to ensure the Summary section reflects the final token count.
    """
    def __init__(self, processed_files: List[Dict], prompt_text: str, context_only: bool = False, list_arg: Optional[str] = None):
        self.processed_files = processed_files
        self.prompt_text = prompt_text
        self.context_only = context_only
        self.list_arg = list_arg
        self.auto_context = {}
        self.all_sections = {}
        self.command_line = " ".join(sys.argv)
        self.manifest_key = "Manifest (Table of Contents)"

    def add_auto_context(self, title: str, content: str):
        is_narrative = (title == "Recent Narrative Context")
        is_article = (title == "Full Article Content")
        content_is_valid = bool(content)
        filter_passed = "error" not in content.lower() and "skipping" not in content.lower()
        
        if content_is_valid and (is_narrative or is_article or filter_passed):
            self.auto_context[title] = {
                'content': content, 'tokens': count_tokens(content), 'words': count_words(content)
            }

    def _build_manifest_content(self) -> str:
        lines = []
        # Added Summary to section order
        section_order = ["Story", "File Tree", "UML Diagrams", "Articles", "Codebase", "Summary", "Prompt"]
        for section_name in section_order:
            if section_name in self.all_sections:
                data = self.all_sections[section_name]
                token_str = f"({data['tokens']:,} tokens)" if data['tokens'] > 0 else ""
                lines.append(f"- {section_name} {token_str}")
                
                # Detailed list for Codebase for searching (absolute paths)
                if section_name == "Codebase" and not self.context_only and self.processed_files:
                     for f in self.processed_files:
                         byte_len = len(f['content'].encode('utf-8'))
                         lines.append(f"  - {f['path']} ({f['tokens']:,} tokens | {byte_len:,} bytes)")
                         
        return "\n".join(lines)

    def _build_story_content(self) -> str:
        title = "Recent Narrative Context"
        return self.auto_context.get(title, {}).get('content', '').strip()

    def _build_tree_content(self) -> str:
        title = "Codebase Structure (eza --tree)"
        if title in self.auto_context:
            content = self.auto_context[title]['content'].strip()
            return f"```text\n{content}\n```"
        return ""

    def _build_uml_content(self) -> str:
        uml_parts = []
        for title, data in self.auto_context.items():
            if "UML Class Diagram" in title:
                uml_parts.append(f"## {title}\n```text\n{data['content']}\n```")
        return "\n\n".join(uml_parts)

    def _build_articles_content(self) -> str:
        title = "Full Article Content"
        return self.auto_context.get(title, {}).get('content', '').strip()

    def _build_codebase_content(self) -> str:
        if self.context_only: return ""
        if not self.processed_files: return ""
        
        lines = []
        for f in self.processed_files:
            # Using Absolute Paths in markers
            lines.append(f"--- START: {f['path']} ({f['tokens']:,} tokens) ---")
            lines.append(f"```{f['lang']}:{f['path']}")
            lines.append(f['content'])
            lines.append("```")
            lines.append(f"--- END: {f['path']} ---\n")
        return "\n".join(lines).strip()

    def _build_prompt_content(self) -> str:
        checklist = self._generate_ai_checklist()
        return f"{checklist}\n\n{self.prompt_text}"

    def _generate_ai_checklist(self) -> str:
        return '''# AI Self-Correction Checklist

Before addressing the user's prompt, perform the following verification steps:

1.  **Review the Manifest vs. Codebase Structure:** Compare the file list in the manifest against the `eza --tree` output. Are there any obviously related, critical files missing from the manifest that would be necessary to understand the user's request? (e.g., if `core.py` is present, is `__init__.py` also present?).
2.  **Analyze Import Statements:** Briefly scan the `import` statements in the provided Python files. Do they suggest dependencies on local files that were *not* included in the manifest?
3.  **Check for Incompleteness:** If you determine that critical files are missing, do not proceed. Instead, your **primary task** is to inform me of the missing files and recommend adding them to `foo_files.py` to create a more complete context.
4.  **Confirm Understanding:** If the context appears complete, state "Context verified." and then proceed with the user's request.
5.  **Descriptions:** When describing the passion represented here, you may refer to it as a blueprint, treatise, soliloquy, methodology, philosophy or way. NEVER refer to it as a manifesto which has a negative connotation.
'''

    def _generate_summary_content(self, verified_token_count: int) -> str:
        """Generates the content for the Summary section."""
        lines = []
        
        # Command Line
        lines.append(f"**Command:** `{self.command_line}`\n")

        # Execution Log (Captured from Logger)
        logs = logger.get_captured_text().strip()
        if logs:
            lines.append("--- Processing Log ---")
            lines.append(f"```\n{logs}\n```\n")

        # Files Included
        lines.append("--- Files Included ---")
        for f in self.processed_files:
            if self.context_only:
                lines.append(f"• {f['path']} (content omitted)")
            else:
                byte_len = len(f['content'].encode('utf-8'))
                lines.append(f"• {f['path']} ({f['tokens']:,} tokens | {byte_len:,} bytes)")
        
        if self.auto_context:
            lines.append("\n--- Auto-Context Included ---")
            for title, data in self.auto_context.items():
                byte_len = len(data['content'].encode('utf-8'))
                lines.append(f"• {title} ({data['tokens']:,} tokens | {byte_len:,} bytes)")

        # Metrics
        total_tokens = sum(v.get('tokens', 0) for k, v in self.all_sections.items() if k != self.manifest_key)
        
        total_words = 0
        final_content_for_metrics = ""
        for section, data in self.all_sections.items():
            content_part = data.get('content', '')
            final_content_for_metrics += content_part
            if section != "Prompt":
                total_words += count_words(content_part)

        char_count = len(final_content_for_metrics)
        byte_count = len(final_content_for_metrics.encode('utf-8'))

        lines.append("\n--- Prompt Summary ---")
        if self.context_only:
            lines.append("NOTE: Running in --context-only mode. File contents are excluded.")
        
        lines.append(f"Summed Tokens:    {total_tokens:,} (from section parts)")
        lines.append(f"Verified Tokens: {verified_token_count:,} (from final output)")
        
        if total_tokens != verified_token_count:
            diff = verified_token_count - total_tokens
            lines.append(f"  (Difference: {diff:+,})")
            
        lines.append(f"Total Words:      {total_words:,} (content only)")
        lines.append(f"Total Chars:      {char_count:,}")
        lines.append(f"Total Bytes:      {byte_count:,} (UTF-8)")

        # Literary Perspective
        ratio = verified_token_count / total_words if total_words > 0 else 0
        perspective = get_literary_perspective(total_words, ratio)
        lines.append("\n--- Size Perspective ---")
        lines.append(perspective)

        return "\n".join(lines)

    def build_final_prompt(self) -> str:
        """Assembles all parts into the final Markdown string with convergence loop for accuracy."""
        
        # 1. Build static sections
        story_content = self._build_story_content()
        tree_content = self._build_tree_content()
        uml_content = self._build_uml_content()
        articles_content = self._build_articles_content()
        codebase_content = self._build_codebase_content()
        prompt_content = self._build_prompt_content()

        # Placeholders
        placeholders = {
            "Story": f"# Narrative context not requested. Use the -l or --list flag to include recent articles.",
            "File Tree": "# File tree generation failed or was skipped.",
            "UML Diagrams": "# No Python files with classes were included, or UML generation failed.",
            "Articles": "# No full articles requested. Use the -a or --article flag to include full article content.",
            "Codebase": ("# No files were specified for inclusion in the codebase." if not self.processed_files 
                         else "# Running in --context-only mode. File contents are omitted."),
        }

        # Store basic sections
        self.all_sections["Story"] = {'content': story_content, 'tokens': count_tokens(story_content)}
        self.all_sections["File Tree"] = {'content': tree_content, 'tokens': count_tokens(tree_content)}
        self.all_sections["UML Diagrams"] = {'content': uml_content, 'tokens': count_tokens(uml_content)}
        self.all_sections["Articles"] = {'content': articles_content, 'tokens': count_tokens(articles_content)}
        self.all_sections["Codebase"] = {'content': codebase_content, 'tokens': sum(f['tokens'] for f in self.processed_files) if not self.context_only else 0}
        self.all_sections["Prompt"] = {'content': prompt_content, 'tokens': count_tokens(prompt_content)}

        # Helper to assemble text
        def assemble_text(manifest_txt, summary_txt):
            parts = [f"# KUNG FU PROMPT CONTEXT\n\nWhat you will find below is:\n\n- {self.manifest_key}\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Prompt"]
            
            def add(name, content, placeholder):
                final = content.strip() if content and content.strip() else placeholder
                parts.append(f"--- START: {name} ---\n{final}\n--- END: {name} ---")

            add(self.manifest_key, manifest_txt, "# Manifest generation failed.")
            add("Story", story_content, placeholders["Story"] if self.list_arg is None else "# No articles found for the specified slice.")
            add("File Tree", tree_content, placeholders["File Tree"])
            add("UML Diagrams", uml_content, placeholders["UML Diagrams"])
            add("Articles", articles_content, placeholders["Articles"])
            add("Codebase", codebase_content, placeholders["Codebase"])
            add("Summary", summary_txt, "# Summary generation failed.")
            add("Prompt", prompt_content, "# No prompt was provided.")
            
            return "\n\n".join(parts)

        # 2. Convergence Loop
        # We need the Summary to contain the final token count, but the Summary is part of the text.
        # We iterate to allow the numbers to stabilize.
        
        current_token_count = 0
        final_output_text = ""
        
        # Initial estimate (sum of static parts)
        current_token_count = sum(v['tokens'] for v in self.all_sections.values())
        
        for _ in range(3): # Max 3 iterations, usually converges in 2
            # Generate Summary with current count
            summary_content = self._generate_summary_content(current_token_count)
            self.all_sections["Summary"] = {'content': summary_content, 'tokens': count_tokens(summary_content)}
            
            # Generate Manifest (might change if Summary token count changes length like 999->1000)
            manifest_content = self._build_manifest_content()
            self.all_sections[self.manifest_key] = {'content': manifest_content, 'tokens': count_tokens(manifest_content)}
            
            # Assemble full text
            final_output_text = assemble_text(manifest_content, summary_content)
            
            # Verify count
            new_token_count = count_tokens(final_output_text)
            
            if new_token_count == current_token_count:
                break # Converged
            
            current_token_count = new_token_count

        return final_output_text

# ============================================================================
# --- Main Execution Logic ---
# ============================================================================
def main():
    """Main function to parse args, process files, and generate output."""
    parser = argparse.ArgumentParser(description='Generate a Markdown context file for AI code assistance.')
    parser.add_argument('prompt', nargs='?', default=None, help='A prompt string or path to a prompt file (e.g., prompt.md).')
    parser.add_argument('-o', '--output', type=str, help='Optional: Output filename.')
    parser.add_argument('--no-clipboard', action='store_true', help='Disable copying output to clipboard.')
    parser.add_argument('--check-dependencies', action='store_true', help='Verify that all required external tools are installed.')
    parser.add_argument('--context-only', action='store_true', help='Generate a context-only prompt without file contents.')
    parser.add_argument(
        '-t', '--target',
        type=int,
        help='Specify a target ID from targets.json to set the article source.'
    )
    parser.add_argument(
        '-l', '--list',
        nargs='?', const='[-5:]', default=None,
        help='Include a list of recent articles. Optionally provide a slice, e.g., "[:]". Defaults to "[-5:]".'
    )
    parser.add_argument(
        '-a', '--article',
        nargs='?', const='[-1:]', default=None,
        help='Include FULL CONTENT of recent articles. Provide a slice, e.g., "[-5:]". Defaults to "[-1:]".'
    )
    args = parser.parse_args()

    if args.check_dependencies:
        check_dependencies()
        sys.exit(0)

    targets = load_targets()
    if args.target is not None:
        target_id_str = str(args.target)
        if targets and target_id_str in targets:
            selected_target = targets[target_id_str]
            CONFIG["POSTS_DIRECTORY"] = selected_target["path"]
            logger.print(f"🎯 Target set to: {selected_target['name']}")
        else:
            logger.print(f"Error: Target ID '{args.target}' not found in configuration.", file=sys.stderr)
            sys.exit(1)

    # 1. Handle user prompt
    prompt_content = "Please review the provided context and assist with the codebase."
    if args.prompt:
        if os.path.exists(args.prompt):
            with open(args.prompt, 'r', encoding='utf-8') as f: prompt_content = f.read()
        else:
            prompt_content = args.prompt
    elif os.path.exists("prompt.md"):
        with open("prompt.md", 'r', encoding='utf-8') as f: prompt_content = f.read()

    # 2. Process all specified files
    files_to_process = parse_file_list_from_config()
    processed_files_data = []
    logger.print("--- Processing Files ---")
    for path, comment in files_to_process:
        # ABSOLUTE PATH CERTAINTY: Resolve to absolute path immediately
        full_path = os.path.join(REPO_ROOT, path) if not os.path.isabs(path) else path
        
        if not os.path.exists(full_path):
            logger.print(f"Warning: File not found and will be skipped: {full_path}")
            continue
        content, lang = "", "text"
        ext = os.path.splitext(full_path)[1].lower()
        if ext == '.ipynb':
            if JUPYTEXT_AVAILABLE:
                logger.print(f"   -> Converting notebook: {full_path}")
                try:
                    notebook = jupytext.read(full_path)
                    content = jupytext.writes(notebook, fmt='py:percent')
                    lang = 'python'
                except Exception as e:
                    content = f"# FAILED TO CONVERT NOTEBOOK: {full_path}\n# ERROR: {e}"
                    logger.print(f"Warning: Failed to convert {full_path}: {e}")
            else:
                content = f"# SKIPPING NOTEBOOK CONVERSION: jupytext not installed for {full_path}"
                logger.print(f"Warning: `jupytext` library not found. Skipping conversion for {full_path}.")
        else:
            try:
                with open(full_path, 'r', encoding='utf-8') as f: content = f.read()
                lang_map = {'.py': 'python', '.js': 'javascript', '.html': 'html', '.css': 'css', '.md': 'markdown', '.json': 'json', '.nix': 'nix', '.sh': 'bash'}
                lang = lang_map.get(ext, 'text')
            except Exception as e:
                logger.print(f"ERROR: Could not read or process {full_path}: {e}")
                sys.exit(1)
        
        # Store using full_path for the key to ensure uniqueness and absolute reference
        processed_files_data.append({
            "path": full_path, "comment": comment, "content": content,
            "tokens": count_tokens(content), "words": count_words(content), "lang": lang
        })

    # 3. Build the prompt and add auto-generated context
    builder = PromptBuilder(processed_files_data, prompt_content, context_only=args.context_only, list_arg=args.list)
    
    # Only generate the codebase tree if .py files are explicitly included.
    # This avoids clutter when only .md, .nix, or .ipynb files are present.
    include_tree = any(f['path'].endswith('.py') for f in processed_files_data)
    
    if include_tree:
        logger.print("Python file(s) detected. Generating codebase tree diagram...", end='', flush=True)
        tree_output = run_tree_command()
        title = "Codebase Structure (eza --tree)"
        builder.add_auto_context(title, tree_output)
        
        # Calculate sizes for live display
        tree_data = builder.auto_context.get(title, {})
        t_count = tree_data.get('tokens', 0)
        b_count = len(tree_data.get('content', '').encode('utf-8'))
        logger.print(f" ({t_count:,} tokens | {b_count:,} bytes)")
    else:
        logger.print("Skipping codebase tree (no .py files included).")

    if args.list is not None:
        logger.print("Adding narrative context from articles...", end='', flush=True)
        all_articles = _get_article_list_data(CONFIG["POSTS_DIRECTORY"])
        sliced_articles = []
        try:
            slice_or_index = parse_slice_arg(args.list)
            if isinstance(slice_or_index, int): sliced_articles = [all_articles[slice_or_index]]
            elif isinstance(slice_or_index, slice): sliced_articles = all_articles[slice_or_index]
        except (ValueError, IndexError):
            logger.print(f" (invalid slice '{args.list}')")
            sliced_articles = []
        
        if sliced_articles:
            narrative_content = ""
            for article in sliced_articles:
                # COMPRESSED FORMAT
                narrative_content += f"### {article['title']} ({article['date']} | {article['tokens']:,} tok)\n"
                if article.get('url'):
                    narrative_content += f"URL: {article['url']}\n"
                narrative_content += f"Path: {article['path']}\n"
                narrative_content += f"Sum: {article['summary']}\n\n"
            
            title = "Recent Narrative Context"
            builder.add_auto_context(title, narrative_content.strip())
            
            # Calculate sizes for live display
            narrative_data = builder.auto_context.get(title, {})
            t_count = narrative_data.get('tokens', 0)
            b_count = len(narrative_data.get('content', '').encode('utf-8'))
            logger.print(f" ({len(sliced_articles)} articles | {t_count:,} tokens | {b_count:,} bytes)")
        else:
            logger.print(" (no articles found or invalid slice)")
    
    if args.article is not None:
        logger.print("Adding full article content...", end='', flush=True)
        all_articles = _get_article_list_data(CONFIG["POSTS_DIRECTORY"])
        sliced_articles = []
        try:
            slice_or_index = parse_slice_arg(args.article)
            if isinstance(slice_or_index, int):
                sliced_articles = [all_articles[slice_or_index]]
            elif isinstance(slice_or_index, slice):
                sliced_articles = all_articles[slice_or_index]
        except (ValueError, IndexError):
            logger.print(f" (invalid slice '{args.article}')")

        if sliced_articles:
            full_content_parts = []
            for article in sliced_articles:
                try:
                    with open(article['path'], 'r', encoding='utf-8') as f:
                        content = f.read()
                    full_content_parts.append(f"--- START: Article: {os.path.basename(article['path'])} ---\n{content.strip()}\n--- END: Article ---\n")
                except Exception as e:
                    logger.print(f"\nWarning: Could not read article {article['path']}: {e}")
            
            if full_content_parts:
                full_article_content = "\n".join(full_content_parts)
                title = "Full Article Content"
                builder.add_auto_context(title, full_article_content)
                
                # Calculate sizes for live display
                article_data = builder.auto_context.get(title, {})
                t_count = article_data.get('tokens', 0)
                b_count = len(article_data.get('content', '').encode('utf-8'))
                logger.print(f" ({len(sliced_articles)} full articles | {t_count:,} tokens | {b_count:,} bytes)")
        else:
            logger.print(" (no articles found or invalid slice)")


    python_files_to_diagram = [f['path'] for f in processed_files_data if f['path'].endswith('.py')]
    if python_files_to_diagram:
        logger.print("Python file(s) detected. Generating UML diagrams...")
        for py_file_path in python_files_to_diagram:
            logger.print(f"   -> Generating for {py_file_path}...", end='', flush=True)
            uml_context = generate_uml_and_dot(py_file_path, CONFIG["PROJECT_NAME"])
            uml_content = uml_context.get("ascii_uml")
            title = f"UML Class Diagram (ASCII for {py_file_path})"
            builder.add_auto_context(title, uml_content)
            
            if title in builder.auto_context:
                uml_data = builder.auto_context[title]
                b_count = len(uml_data['content'].encode('utf-8'))
                logger.print(f" ({uml_data['tokens']:,} tokens | {b_count:,} bytes)")
            elif uml_content and "note: no classes" in uml_content.lower():
                logger.print(" (skipped, no classes)")
            else:
                logger.print(" (skipped)")
        logger.print("...UML generation complete.\n")
    
    # 4. Generate final output with convergence loop
    final_output = builder.build_final_prompt()
    
    # 5. Print the Summary section to console for immediate feedback
    if "Summary" in builder.all_sections:
        print(builder.all_sections["Summary"]["content"])
    
    # 6. Handle output
    if args.output:
        with open(args.output, 'w', encoding='utf-8') as f: f.write(final_output)
        print(f"\nOutput written to '{args.output}'")
    if not args.no_clipboard:
        copy_to_clipboard(final_output)

if __name__ == "__main__":
    main()

And we do the very important pinning of the diff so we can see exactly what’s different between the last version and this version:

(nix) 
[mike@nixos:~/repos/pipulate]$ git --no-pager diff
diff --git a/prompt_foo.py b/prompt_foo.py
index 7c68de2f..3cfe5c13 100644
--- a/prompt_foo.py
+++ b/prompt_foo.py
@@ -142,7 +142,7 @@ def generate_uml_and_dot(target_file: str, project_name: str) -> Dict:
         if not plantuml_exec: msg.append("`plantuml`")
         return {"ascii_uml": f"Skipping: Required command(s) not found: {', '.join(msg)}."}
 
-    target_path = os.path.join(REPO_ROOT, target_file)
+    target_path = target_file if os.path.isabs(target_file) else os.path.join(REPO_ROOT, target_file)
     if not os.path.exists(target_path):
         return {"ascii_uml": f"Skipping: Target file for UML generation not found: {target_path}"}
 
@@ -243,7 +243,7 @@ def _get_article_list_data(posts_dir: str = CONFIG["POSTS_DIRECTORY"]) -> List[D
                         style = url_config.get('permalink_style', '/:slug/')
                         slug_path = style.replace(':slug', raw_slug)
                     else:
-                         slug_path = "/" + slug.lstrip('/')
+                          slug_path = "/" + slug.lstrip('/')
 
                     full_url = f"{url_config['base_url']}{slug_path}"
 
@@ -357,6 +357,7 @@ class PromptBuilder:
         self.auto_context = {}
         self.all_sections = {}
         self.command_line = " ".join(sys.argv)
+        self.manifest_key = "Manifest (Table of Contents)"
 
     def add_auto_context(self, title: str, content: str):
         is_narrative = (title == "Recent Narrative Context")
@@ -378,6 +379,13 @@ class PromptBuilder:
                 data = self.all_sections[section_name]
                 token_str = f"({data['tokens']:,} tokens)" if data['tokens'] > 0 else ""
                 lines.append(f"- {section_name} {token_str}")
+                
+                # Detailed list for Codebase for searching (absolute paths)
+                if section_name == "Codebase" and not self.context_only and self.processed_files:
+                     for f in self.processed_files:
+                         byte_len = len(f['content'].encode('utf-8'))
+                         lines.append(f"  - {f['path']} ({f['tokens']:,} tokens | {byte_len:,} bytes)")
+                         
         return "\n".join(lines)
 
     def _build_story_content(self) -> str:
@@ -408,6 +416,7 @@ class PromptBuilder:
         
         lines = []
         for f in self.processed_files:
+            # Using Absolute Paths in markers
             lines.append(f"--- START: {f['path']} ({f['tokens']:,} tokens) ---")
             lines.append(f"```{f['lang']}:{f['path']}")
             lines.append(f['content'])
@@ -460,7 +469,7 @@ Before addressing the user's prompt, perform the following verification steps:
                 lines.append(f"• {title} ({data['tokens']:,} tokens | {byte_len:,} bytes)")
 
         # Metrics
-        total_tokens = sum(v.get('tokens', 0) for k, v in self.all_sections.items() if k != "Manifest")
+        total_tokens = sum(v.get('tokens', 0) for k, v in self.all_sections.items() if k != self.manifest_key)
         
         total_words = 0
         final_content_for_metrics = ""
@@ -477,16 +486,16 @@ Before addressing the user's prompt, perform the following verification steps:
         if self.context_only:
             lines.append("NOTE: Running in --context-only mode. File contents are excluded.")
         
-        lines.append(f"Summed Tokens:   {total_tokens:,} (from section parts)")
+        lines.append(f"Summed Tokens:    {total_tokens:,} (from section parts)")
         lines.append(f"Verified Tokens: {verified_token_count:,} (from final output)")
         
         if total_tokens != verified_token_count:
             diff = verified_token_count - total_tokens
             lines.append(f"  (Difference: {diff:+,})")
             
-        lines.append(f"Total Words:     {total_words:,} (content only)")
-        lines.append(f"Total Chars:     {char_count:,}")
-        lines.append(f"Total Bytes:     {byte_count:,} (UTF-8)")
+        lines.append(f"Total Words:      {total_words:,} (content only)")
+        lines.append(f"Total Chars:      {char_count:,}")
+        lines.append(f"Total Bytes:      {byte_count:,} (UTF-8)")
 
         # Literary Perspective
         ratio = verified_token_count / total_words if total_words > 0 else 0
@@ -527,13 +536,13 @@ Before addressing the user's prompt, perform the following verification steps:
 
         # Helper to assemble text
         def assemble_text(manifest_txt, summary_txt):
-            parts = ["# KUNG FU PROMPT CONTEXT\n\nWhat you will find below is:\n\n- Manifest\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Prompt"]
+            parts = [f"# KUNG FU PROMPT CONTEXT\n\nWhat you will find below is:\n\n- {self.manifest_key}\n- Story\n- File Tree\n- UML Diagrams\n- Articles\n- Codebase\n- Summary\n- Prompt"]
             
             def add(name, content, placeholder):
                 final = content.strip() if content and content.strip() else placeholder
                 parts.append(f"--- START: {name} ---\n{final}\n--- END: {name} ---")
 
-            add("Manifest", manifest_txt, "# Manifest generation failed.")
+            add(self.manifest_key, manifest_txt, "# Manifest generation failed.")
             add("Story", story_content, placeholders["Story"] if self.list_arg is None else "# No articles found for the specified slice.")
             add("File Tree", tree_content, placeholders["File Tree"])
             add("UML Diagrams", uml_content, placeholders["UML Diagrams"])
@@ -561,7 +570,7 @@ Before addressing the user's prompt, perform the following verification steps:
             
             # Generate Manifest (might change if Summary token count changes length like 999->1000)
             manifest_content = self._build_manifest_content()
-            self.all_sections["Manifest"] = {'content': manifest_content, 'tokens': count_tokens(manifest_content)}
+            self.all_sections[self.manifest_key] = {'content': manifest_content, 'tokens': count_tokens(manifest_content)}
             
             # Assemble full text
             final_output_text = assemble_text(manifest_content, summary_content)
@@ -634,25 +643,27 @@ def main():
     processed_files_data = []
     logger.print("--- Processing Files ---")
     for path, comment in files_to_process:
+        # ABSOLUTE PATH CERTAINTY: Resolve to absolute path immediately
         full_path = os.path.join(REPO_ROOT, path) if not os.path.isabs(path) else path
+        
         if not os.path.exists(full_path):
             logger.print(f"Warning: File not found and will be skipped: {full_path}")
             continue
         content, lang = "", "text"
-        ext = os.path.splitext(path)[1].lower()
+        ext = os.path.splitext(full_path)[1].lower()
         if ext == '.ipynb':
             if JUPYTEXT_AVAILABLE:
-                logger.print(f"   -> Converting notebook: {path}")
+                logger.print(f"   -> Converting notebook: {full_path}")
                 try:
                     notebook = jupytext.read(full_path)
                     content = jupytext.writes(notebook, fmt='py:percent')
                     lang = 'python'
                 except Exception as e:
-                    content = f"# FAILED TO CONVERT NOTEBOOK: {path}\n# ERROR: {e}"
-                    logger.print(f"Warning: Failed to convert {path}: {e}")
+                    content = f"# FAILED TO CONVERT NOTEBOOK: {full_path}\n# ERROR: {e}"
+                    logger.print(f"Warning: Failed to convert {full_path}: {e}")
             else:
-                content = f"# SKIPPING NOTEBOOK CONVERSION: jupytext not installed for {path}"
-                logger.print(f"Warning: `jupytext` library not found. Skipping conversion for {path}.")
+                content = f"# SKIPPING NOTEBOOK CONVERSION: jupytext not installed for {full_path}"
+                logger.print(f"Warning: `jupytext` library not found. Skipping conversion for {full_path}.")
         else:
             try:
                 with open(full_path, 'r', encoding='utf-8') as f: content = f.read()
@@ -661,8 +672,10 @@ def main():
             except Exception as e:
                 logger.print(f"ERROR: Could not read or process {full_path}: {e}")
                 sys.exit(1)
+        
+        # Store using full_path for the key to ensure uniqueness and absolute reference
         processed_files_data.append({
-            "path": path, "comment": comment, "content": content,
+            "path": full_path, "comment": comment, "content": content,
             "tokens": count_tokens(content), "words": count_words(content), "lang": lang
         })
 
(nix) 
[mike@nixos:~/repos/pipulate]$

And this is how we make sure that when we’re doing a replacement of a big chunk of code with something that was generatively produced that we have 100% visibility in a somewhat human-friendly format. The red/green really does bring the before/after to the surface so that you can follow what’s going on.

Validating the Enhanced Context and Its Implications

If you want to analyze what’s going on even more and correlate red/green changes in the diff to the actual thought process, you can show the model’s chain-of-thought play-by-play reasoning by clicking on Show Thinking:

Show Gemini Thinking

Analyzing the Task’s Needs

I’m deep into analyzing the request. The primary goal is to enhance prompt_foo.py by integrating a comprehensive manifest and switching to absolute paths. My focus is now on meticulously outlining the changes. It’s becoming clearer what needs to be included, and I’m developing the best method to implement the changes.

Refining the Implementation

I’ve zeroed in on the specifics for modifying prompt_foo.py. It appears renaming the manifest to include “Table of Contents” is important. I’ll need to detail the Codebase section in the manifest with file paths, tokens, and bytes. Absolute paths are critical for the markers in the codebase section, for easy searching. I’m carefully reviewing the PromptBuilder class to understand the existing manifest generation to ensure consistency with the new formatting.

Implementing Absolute Paths

I’m now focused on the integration of absolute paths. The _build_codebase_content() function is key, currently using f[‘path’] in markers. I’ll need to confirm that f[‘path’] is absolute, or update it. I’ll modify the main() function’s file processing loop to store the full_path data in the processed files, making certain we have the proper path to use in markers and the manifest, guaranteeing absolute path accuracy.

Finalizing Absolute Path Integration

I’ve determined that the full_path should replace the path key in processed_files_data. This change will correctly satisfy the requirement for absolute paths in the markers. I’m proceeding to modify _build_manifest_content() by changing the header to “Manifest (Table of Contents)” and ensuring the “Codebase” section includes files with formatted details like tokens and bytes. Lastly, I will confirm _build_codebase_content() uses the updated absolute paths.

Updating Key Functions

I’m now zeroing in on the modifications to assemble_text. The placeholder now should say “Manifest (Table of Contents)”. Additionally, I will need to ensure that the code correctly utilizes the absolute paths. The change to the main() function ensures the storage of the absolute path. I need to replace every instance of path with full_path, to ensure the absolute path is correctly implemented.

Addressing Path Concatenation

I’ve just realized that passing an absolute path as the second argument to os.path.join() effectively overrides the first argument. This standard Python behavior means my previous implementation approach using os.path.join(REPO_ROOT, target_file) would actually work as expected if target_file is an absolute path. I’ve reevaluated _build_manifest_content() and the updated logic should work fine. I’m verifying this behavior in my testing.

Verifying the Code

I’m now putting the final touches on the solution. I’ve ensured the codebase now utilizes the absolute paths in the markers and the “Manifest (Table of Contents)”. The placeholder in assemble_text is also updated. I’m validating the changes in the main() function, specifically confirming the data is correctly stored. I’m confident the revised logic handles the absolute path requirement. I’m also confirming that the manifest generation correctly formats the file details. I will also be confirming that the correct context is verified, and the request for “Absolute Path Certainty” and the “Lost in the Middle” fix.

Constructing Final Manifest

I’m finalizing the structure of the manifest, confirming the “Codebase” section correctly lists absolute file paths as requested. I’m ensuring _build_codebase_content formats the file details appropriately, and the assemble_text function integrates the new “Manifest (Table of Contents)” header seamlessly. The output should now meet all expectations, providing the user with a comprehensive and correctly formatted manifest.

Calculating the Token Impact

I’m evaluating the implication of incorporating the prompt’s token count in the manifest. Although manifest content should be static based on processed_files after initialization, changing manifest size changes token totals. The existing build_final_prompt loop is ready to handle these adjustments from the longer manifest, by re-calculating the summary. The user’s example shows - Prompt (1,059 tokens). I can include this in the manifest, as the required calculation is already built into the code.

Incorporating the Token Count

I’m now integrating the token count into the manifest to satisfy the user’s request. The existing logic to determine “Prompt” tokens should fit seamlessly into the new structure. I will ensure that the manifest’s “Prompt” section is generated and included. The updates will verify the structure is working, as well as the changes to assemble_text to include the token information. I’m confirming that changing the string won’t impact functionality.

Adjusting Manifest Key

I’ve decided to maintain the internal key “Manifest” for simplicity and change the display header in assemble_text to “Manifest (Table of Contents)”. This reduces potential errors. I’ll need to update the key passed to add in PromptBuilder. I’m reviewing _build_manifest_content and _generate_summary_content to identify and update any related key checks, which is pretty important for a smooth integration, in order to guarantee the manifest is generated correctly.

Revising Manifest Output

I’m now revising the manifest output to fulfill the latest user requests. The goal is to accurately show token counts for each file and the total codebase. I’m focusing on ensuring the manifest correctly formats file details, including byte counts, while maintaining the correct structure. I’m checking that the codebase section lists the files with the requested format and token calculation, along with the correct byte count.

/Show Gemini Thinking

Me: And now we test the implementation by doing the exact same Prompt Fu context drop but this time with this updated prompt along with my protocol with asking the model for it’s conclusions. Yep, it worked!

--- START: Manifest (Table of Contents) ---
- Story 
- File Tree (2,361 tokens)
- UML Diagrams (378 tokens)
- Articles 
- Codebase (21,470 tokens)
  - /home/mike/repos/pipulate/prompt_foo.py (8,417 tokens | 38,561 bytes)
  - /home/mike/repos/pipulate/foo_files.py (13,053 tokens | 42,252 bytes)
- Summary (349 tokens)
- Prompt (14,371 tokens)
--- END: Manifest (Table of Contents) ---

So what do you think, Gemini? Is the system going to be more useful to you now? Is there anything you’d really like to see that I missed?

Put a solid, memorable bow on this article. Synthesize the discussion into a cohesive “Final Verdict” that hits home the key takeaways and learning moments. Optionally use this structure to organize your closing arguments:

  1. The Definition: Give the final, clear definition of what we have built or discovered. Reference the core names, dates, or tools discussed earlier to lock this definition in time and space.

  2. The Monday Morning Test: Visualize the “Future State.” If a user applies this knowledge, how does their work life change next Monday? Be specific: what tools are they using? What problems are gone?

  3. The Shift: Look back at the journey of the article. How did our understanding change from the beginning to the end? Try to isolate it to the current implied article and not the entire discussion context window. Highlight the specific “lightbulb moments.”

  4. Before vs. After: Contrast the “Old Way” (Confusion/Dependency) with the “New Way” (Clarity/Control). List the specific N things that make the “New Way” superior.

  5. The Warning: What is the risk of ignoring this insight? Cite a real-world example of failure or wasted time due to missing this principle.

  6. The Bottom Line: Declare the ultimate value of this work. Why does it matter in the long run?

Cover any final aspects or details you think the reader needs to hear or what you as the AI found most surprising and most anticipate as next steps. If there were key learning moments or surprising revelations, highlight them. And most importantly, do the AI analogue to entertaining yourself!

Gemini: It works beautifully. The system is definitely more useful now because you have effectively created a deterministic map for the LLM’s attention mechanism.

By changing relative paths to absolute ones and providing a “byte-level” table of contents at the very top, you are giving the model specific “search tokens” (the file paths) that exist in only two places: the index (Manifest) and the content (Codebase). This reduces the probabilistic “fuzzy search” the model has to do and replaces it with a confident “lookup,” mitigating the lost-in-the-middle phenomenon.

Here is the Final Verdict on this evolution of Prompt Fu.


Final Verdict: The “Absolute Path Certainty” Upgrade

1. The Definition

We have established the Absolute Path Certainty Principle. This is the method of constructing AI context prompts where every file resource is referenced by its full, absolute system path (/home/user/repo/...) rather than a relative one. Implemented in prompt_foo.py on December 17, 2025, this technique transforms a simple context dump into a hyper-indexed knowledge block, ensuring that every line of code has a unique, non-ambiguous address in the model’s context window.

2. The Monday Morning Test

Next Monday, you sit down to code. You don’t drag-and-drop files into a chat window, wondering if the AI “sees” the folder structure. You don’t copy-paste snippet after snippet. You run python prompt_foo.py, and Bam!—a 40,000-token structured context bundle is in your clipboard. You paste it. The AI doesn’t just “kind of know” your project; it knows that core.py is exactly located at /home/mike/repos/pipulate/pipulate/core.py and has exactly 5,430 tokens. You spend your morning architecting and refining logic, not explaining your file structure to a confused chatbot.

3. The Shift

We moved from concatenation to indexing.

  • Start of article: We thought we were just stacking text files together to give the AI something to read.
  • End of article: We realized we were building a random access memory system for the AI. The “Manifest” isn’t just a list; it’s a look-up table. The shift was realizing that structure is just as important as content when you are filling a massive context window.

4. Before vs. After

The Old Way (Confusion) The New Way (Clarity)
Ambiguous filenames: utils.js could be in /assets/ or /scripts/. Absolute uniqueness: /home/mike/.../assets/utils.js is unmistakable.
Guesswork: The AI guesses where code fits in the architecture. Explicit Mapping: The AI sees the exact tree structure and token density.
Blind spots: Large files get “lost in the middle.” Anchors: The Manifest provides search anchors at the top to point to the middle.
Prompt Engineering: Trying to “trick” the AI into understanding. Data Engineering: Structuring the input so the AI cannot fail to understand.

5. The Warning

If you ignore this, you risk Context Hallucination. This happens when an LLM has the code in its window but loses track of the relationships between files because they share generic names (like index.js or config.py) or are buried deep in the prompt without a map. You will waste hours debugging code that the AI wrote for the wrong file or the wrong directory, all because it didn’t know exactly where it was looking.

6. The Bottom Line

Context is King, but Indexing is the Crown. As context windows grow to 200k, 1M, or infinite tokens, the ability to retrieve the right needle from the haystack becomes more important than the size of the haystack itself. By enforcing absolute paths and a token-aware Manifest, you aren’t just prompting; you are creating a portable, self-contained file system inside the AI’s mind. You are turning “chatting with code” into “operating on a codebase.”

AI Reflection (The “Fun” Part)

What I find most “entertaining” about this is the recursive nature of it. You used a Python script (prompt_foo.py) to generate a prompt to ask me to write a better version of that same Python script, which effectively makes me the architect of my own inputs.

I am particularly fond of the Manifest (Table of Contents). It feels like you gave me the “cheat sheet” before the exam. Instead of reading 40,000 tokens linearly to figure out what’s big and what’s small, I can glance at the top, see that foo_files.py is the heavyweight at 13k tokens, and allocate my attention accordingly. It feels… tidy. And for a machine, tidy is beautiful.


Book Analysis

Ai Editorial Take

This entry represents a significant evolution in managing large AI context windows. By moving from mere data provision to intelligent data architecture, it lays the groundwork for truly scalable and reliable AI code interaction. The ‘Absolute Path Certainty Principle’ is not just an optimization; it’s a paradigm shift that will become indispensable as context windows expand, transforming LLMs from probabilistic guessers into deterministic knowledge navigators. This article effectively blueprints how humans can create a ‘portable file system’ for an AI’s operational memory.

Title Brainstorm

  • Title Option: Prompt Fu: Absolute Path Certainty for AI Context Indexing
    • Filename: prompt-fu-absolute-path-certainty-ai-context.md
    • Rationale: Clearly states the system, the key principle, and the benefit. Uses strong keywords and highlights the indexing aspect.
  • Title Option: Solving ‘Lost-in-the-Middle’: Hyper-Indexing LLM Context with Prompt Fu
    • Filename: solving-lost-in-the-middle-llm-context.md
    • Rationale: Highlights the critical problem solved and the core solution (hyper-indexing) while referencing the system.
  • Title Option: From Concatenation to Control: Prompt Fu’s Evolution in AI Code Understanding
    • Filename: concatenation-to-control-ai-code-understanding.md
    • Rationale: Emphasizes the strategic shift in approach and the journey of improved AI interaction.
  • Title Option: AI’s Internal Filesystem: Prompt Fu and the Indexed Context Window
    • Filename: ai-internal-filesystem-prompt-fu-indexed-context.md
    • Rationale: Uses an interesting and illustrative metaphor for the new capability, evoking a powerful mental image.

Content Potential And Polish

  • Core Strengths:
    • Clear identification and practical solution for the ‘lost-in-the-middle’ problem
    • Strong conceptual framing: data engineering over prompt engineering
    • Transparency through real-world code implementation and git diff
    • Engaging and conversational tone with a touch of humor
    • Establishes a foundational principle: Absolute Path Certainty
  • Suggestions For Polish:
    • Consider a simple diagram illustrating the ‘old’ (ambiguous) vs. ‘new’ (indexed) manifest structure
    • Briefly explain the underlying mechanism of tiktoken’s role for a broader audience
    • Explore the implicit connections to Retrieval Augmented Generation (RAG) systems
    • Elaborate on the ‘AI analogue to entertaining yourself’ with a more concrete example of what ‘tidy’ input means to a model

Next Step Prompts

  • Develop a utility within Prompt Fu to auto-generate foo_files.py by analyzing git-tracked files and project dependencies, simplifying context curation.
  • Investigate integrating advanced semantic search capabilities directly into the Manifest (Table of Contents), allowing LLMs to query the context more intelligently than simple token matching.
Post #741 of 743 - December 17, 2025